當前位置:
首頁 > 知識 > 沒想到你竟然是這樣的定理!

沒想到你竟然是這樣的定理!

誰說數學是枯燥的?在數學裡,有很多歡樂而又深刻的數學定理。這些充滿生活氣息的數學定理,不但深受數學家們的喜愛,在數學迷的圈子裡也廣為流傳。


喝醉的小鳥


定理:喝醉的酒鬼總能找到回家的路,喝醉的小鳥則可能永遠也回不了家。

沒想到你竟然是這樣的定理!



假設有一條水平直線,從某個位置出發,每次有 50% 的概率向左走1米,有50%的概率向右走1米。按照這種方式無限地隨機遊走下去,最終能回到出發點的概率是多少?答案是100% 。在一維隨機遊走過程中,只要時間足夠長,我們最終總能回到出發點。


現在考慮一個喝醉的酒鬼,他在街道上隨機遊走。假設整個城市的街道呈網格狀分布,酒鬼每走到一個十字路口,都會概率均等地選擇一條路(包括自己來時的那條路)繼續走下去。那麼他最終能夠回到出發點的概率是多少呢?答案也還是 100% 。剛開始,這個醉鬼可能會越走越遠,但最後他總能找到回家路。

不過,醉酒的小鳥就沒有這麼幸運了。假如一隻小鳥飛行時,每次都從上、下、左、右、前、後中概率均等地選擇一個方向,那麼它很有可能永遠也回不到 出發點了。事實上,在三維網格中隨機遊走,最終能回到出發點的概率只有大約 34% 。


這個定理是著名數學家波利亞(George Pólya)在 1921 年證明的。隨著維度的增加,回到出發點的概率將變得越來越低。在四維網格中隨機遊走,最終能回到出發點的概率是 19.3% ,而在八維空間中,這個概率只有 7.3% 。


「你在這裡」

沒想到你竟然是這樣的定理!


這個局面並不罕見:在商場的地板上畫一張整個商場的地圖,那麼你總能在地圖上找到一個「你在這裡」的標記——它可以做到非常精確。


1912 年,荷蘭數學家布勞威爾(Luitzen Brouwer)證明了這麼一個定理:假設 D 是某個圓盤中的點集,f 是一個從 D 到它自身的連續函數,則一定有一個點 x ,使得 f(x) = x 。換句話說,讓一個圓盤裡的所有點做連續的運動,則總有一個點可以正好回到運動之前的位置。這個定理叫做布勞威爾不動點定理(Brouwer fixed point theorem)。


除了上面的「地圖定理」,布勞威爾不動點定理還有很多其他奇妙的推論。如果取兩張大小相同的紙,把其中一張紙揉成一團之後放在另一張紙上,根據布勞威爾不動點定理,紙團上一定存在一點,它正好位於下面那張紙的同一個點的正上方。


這個定理也可以擴展到三維空間中去:當你攪拌完咖啡後,一定能在咖啡中找到一個點,它在攪拌前後的位置相同(雖然這個點在攪拌過程中可能到過別的地方)


不能撫平的毛球

定理:你永遠不能理順椰子上的毛。

沒想到你竟然是這樣的定理!



想像一個表面長滿毛的球體,你能把所有的毛全部梳平,不留下任何像雞冠一樣的一撮毛或者像頭髮一樣的旋嗎?拓撲學告訴你,這是辦不到的。這叫做毛球定理(hairy ball theorem),它也是由布勞威爾首先證明的。用數學語言來說就是,在一個球體表面,不可能存在連續的單位向量場。這個定理可以推廣到更高維的空間:對於任意一個偶數維的球面,連續的單位向量場都是不存在的。

毛球定理在氣象學上有一個有趣的應用:由於地球表面的風速和風向都是連續的,因此由毛球定理,地球上總會有一個風速為 0 的地方,也就是說氣旋和風眼是不可避免的。


氣候完全相同的另一端


定理:在任意時刻,地球上總存在對稱的兩點,他們的溫度和大氣壓的值正好都相同。

沒想到你竟然是這樣的定理!



波蘭數學家烏拉姆(Stanis?aw Marcin Ulam)曾經猜想,任意給定一個從 n 維球面到 n 維空間的連續函數,總能在球面上找到兩個與球心相對稱的點,他們的函數值是相同的。1933 年,波蘭數學家博蘇克(Karol Borsuk)證明了這個猜想,這就是拓撲學中的博蘇克-烏拉姆定理(Borsuk–Ulam theorem)。


博蘇克-烏拉姆定理有很多推論,其中一個推論就是,在地球上總存在對稱的兩點,他們的溫度和大氣壓的值正好都相同(假設地球表面各地的溫度差異和大氣壓差異是連續變化的)。這是因為,我們可以把溫度值和大氣壓值所有可能的組合看成平面直角坐標繫上的點,於是地球表面各點的溫度和大氣壓變化情況就可以看作是二維球面到二維平面的函數,由博蘇克-烏拉姆定理便可推出,一定存在兩個函數值相等的對稱點。


當 n = 1 時,博蘇克-烏拉姆定理則可以表述為,在任一時刻,地球的赤道上總存在溫度相等的兩個點。對於這個弱化版的推論,我們有一個非常直觀的證明方法:假設赤道上有 A、B 兩個人,他們站在關於球心對稱的位置上。如果此時他們所在地方的溫度相同,問題就已經解決了。下面我們只需要考慮他們所在地點的溫度一高一低的情況。不妨假設,A 所在的地方是 10 度,B 所在的地方是 20 度吧。現在,讓兩人以相同的速度相同的方向沿著赤道旅行,保持兩人始終在對稱的位置上。假設在此過程中,各地的溫度均不變。旅行過程中,兩人不斷報出自己 當地的溫度。等到兩人都環行赤道半周后,A 就到了原來 B 的位置,B 也到了 A 剛開始時的位置。在整個旅行過程中,A 所報的溫度從 10 開始連續變化(有可能上下波動甚至超出 10 到 20 的範圍),最終變成了 20;而 B 經歷的溫度則從 20 出發,最終連續變化到了 10。那麼,他們所報的溫度值在中間一定有「相交」的一刻,這樣一來我們也就找到了赤道上兩個溫度相等的對稱點。


平分火腿三明治


定理:任意給定一個火腿三明治,總有一刀能把它切開,使得火腿、乳酪和麵包片恰好都被分成兩等份。

沒想到你竟然是這樣的定理!



而且更有趣的是,這個定理的名字真的就叫做「火腿三明治定理」(ham sandwich theorem)。它是由數學家亞瑟?斯通(Arthur Stone)和約翰?圖基(John Tukey)在 1942 年證明的,在測度論中有著非常重要的意義。


火腿三明治定理可以擴展到 n 維的情況:如果在 n 維空間中有 n 個物體,那麼總存在一個 n - 1 維的超平面,它能把每個物體都分成「體積」相等的兩份。這些物體可以是任何形狀,還可以是不連通的(比如麵包片),甚至可以是一些奇形怪狀的點集,只要滿足點集可測就行了。

您可能感興趣

想不到你竟然是這樣的孔子
沒想到,你竟是這樣的魯迅!
沒想到巴哥竟然是這樣的狗
沒想到你是這樣的香蕉
沒想到你是這樣的小象,這才是真正的壁咚好么?
沒想到你是這樣的鹿晗!真的讓我無法再愛!
沒想到你是這樣的龍貓
這樣的設定,你想到過嗎?
沒想到你是這樣的花器
沒想到你是這樣的霸道總裁!
啥事都接吻,沒想到,你是這樣的天蠍!
沒想到你是這樣的井蓋……
沒想到你們是這樣的德牧!
沒想到你竟是這樣的數據線……
整理鬍鬚,你可以做到這樣嗎?
沒想到你是這樣的陳偉霆!
沒想到「你」是這樣的「鬼」片
揭秘以為這些鹿只是被抓去賣而已,沒想到卻是這樣!
沒想到你是這樣的川普