當前位置:
首頁 > 最新 > Data Scientist 常見面試問題總結

Data Scientist 常見面試問題總結

「全球人工智慧」擁有十多萬AI產業用戶,10000多名AI技術專家。主要來自:北大,清華,中科院,麻省理工,卡內基梅隆,斯坦福,哈佛,牛津,劍橋...以及谷歌,騰訊,百度,臉譜,微軟,阿里,海康威視,英偉達......等全球名校和名企。

——免費加入AI技術專家社群>>

——免費加入AI高管投資者群>>

——申請成為AI高校推廣大使>>

幾乎所有的面試都免不了以自我介紹為開頭。對於考官,通常也會想基於自我介紹發現接下來要問的問題。所以,自我介紹非常重要。我參考的模板:

教育背景:簡單說說哪年在哪裡獲得什麼學位。

相關經驗:按時間順序講一下2個做過的項目,介紹下用了什麼辦法,比如用了什麼編程語言,最後的成果是什麼。最好有些量化的指標,比如發表了多少論文,被引用了多少次。這些項目最好和面試的職位有關係。實在沒有,也可以看看從中學到的知識或者技能可否擴展到data science. 比如之前做過信號處理,可以講這個項目為data science打下了統計基礎。

最自豪的成就和表態:介紹一下自己最自豪的項目,關鍵是要點出自己的優勢,比如迅速掌握了一個很大的代碼庫,或者在代碼庫中加入了一個很有用的特性,並再次強調一下自己的優勢,結尾說,我希望能在XX公司繼續發揮這些優勢。

被問過的問題總結

機器學習(Machine learning)演算法

包括演算法對數據的假設,推導,有什麼優缺點,何時改用什麼演算法,怎麼選擇演算法,很類似P2 student intervention的model選擇問題。

作為入門的參考書:Introduction to Data Mining (Pang-Ning Tan, Michael Steinbach, Vipin Kumar);

複雜一點兒的:The Elements of Statistical Learning (Trevor Hastie, Robert Tibshirani , Jerome Friedman)

相關的演算法可能包括:

Classification / Regression

SVM:是很多考官的最愛,最好做到可以推導

Neural Networks

Trees & ensemble methods: boosting, bagging

Clustering

K-means/median/medoids

Spectral clustering

Hierarchical

DBSCAN: density based spatial clustering of applications with noise

Self organizing map

Association: 這個在Udacity沒有介紹,但是大數據可能會用到

Apriori 以及它對大數據的衍生

FP growth 並行實現

其他演算法問題:

Q-learning: 解釋為什麼update Q value的時候要用下一個state的max Q,為什麼不能用mean?

Kalman filter: 在項目中用到了,要求推導

Expectation maximization

關於大數據的問題

很多職位要求,會牽扯到一些大數據相關的問題

參考書:Mining of Massive Datasets (Jure Leskovec, Anand Rajaraman, Jeff Ullman) 免費的下載://infolab.stanford.edu/~ullman/mmds/book.pdf

演算法:

Finding similar items

Find frequent itemsets

Recommendation systems

Social graph mining

關於大數據的問題:

用過的數據量有多大

GPU的相關經驗?

Hadoop是怎麼讀入很大的數據的? 接受HDFS?

Spark的相關項目,用的什麼model和library

Spark: RDD相關的概念

Spark: 如果數據遠遠大於內存,是怎麼處理的?

是否遇到過這樣的情景:通過對數據的初步分析,觀察到有趣的現象?

Spark: 舉例說明inner join, outer join, etc.

其他網上看到的常見問題:

Support, confidence, and lift

What is curse of dimensionality?

A/B testing

Precision, recall, F1

How to handle missing data?

?

系統學習,進入全球人工智慧學院


喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 輕芒 的精彩文章:

杭州,即將有一個新名字!
不同臉型怎麼選眉型?
領域頂級專家報告、廠商展台、晚宴盛況概覽
北風吹:以身外身,做夢中夢—數字虛擬下的肉體現實
承認「我做不到啊」,生活也許能過得更好

TAG:輕芒 |