當前位置:
首頁 > 最新 > 2017年諾貝爾獎陸續公布:題材高冷 成果實用

2017年諾貝爾獎陸續公布:題材高冷 成果實用

英國科學家理查德·亨德森

英國科學家理查德·亨德森

瑞士科學家雅克·杜博歇

瑞典皇家科學院4日宣布,將2017年諾貝爾化學獎授予瑞士科學家雅克·杜博歇、美國科學家約阿希姆·弗蘭克以及英國科學家理查德·亨德森,以表彰他們在冷凍顯微術領域的貢獻。

諾貝爾化學獎

解讀冷凍顯微術

「抓拍」生命分子的高清照片

在生物體內,無數複雜分子不斷地運動著,形成又拆解、結合又分離,通過這些過程來實現各種生理功能。如果能任意「抓拍」高清照片、看清某個分子在特定瞬間的模樣,將使我們更深入地理解生命如何運作。

近幾年來迅速躥紅的低溫冷凍電子顯微術(Cryo—EM)就是這樣一種「抓拍」手段。2017年諾貝爾化學獎的三位獲獎者對該技術的發展作出了關鍵貢獻。

20世紀80年代初,工作於歐洲分子生物學實驗室的雅克·杜博歇提出了「急速冷卻」方案,奠定了低溫冷凍電子顯微術樣本製備與觀察的基本技術手段。

電子顯微鏡觀測的樣本通常是只含一層分子的薄膜,可以視為二維的。對大量散布的同一種分子拍攝二維圖像,再把這些圖像整合起來,就可以得到該分子的三維圖像。20世紀70年代,在紐約沃茲沃思研究中心工作的約阿希姆·弗蘭克開始進行這種「三維重構」的理論研究,開發出了多種數學工具和圖像處理方法。

1990年,英國劍橋分子生物學實驗室的理查德·亨德森小組報告了他們對一種色素蛋白進行的三維重構,這項成果是低溫冷凍電子顯微術的重要里程碑,證明「冷凍樣本-二維成像-三維重構」的確可以得到高解析度的三維圖像。它標誌著一種研究生物大分子結構的新方法已經成形,其思路與X射線晶體學迥異,可以給生物體內溶液中、處於工作狀態的分子「抓拍」快照。

近幾年來,傳統的電子顯微術照相機被可以直接檢測電子的設備取代,解決了圖像轉換導致細節丟失的問題,這個重大進展也是亨德森的貢獻。低溫冷凍電子顯微術的「高清時代」終於來臨。

諾貝爾生理學或醫學獎

解讀人體生物鐘分子機制

解決失眠的鑰匙

從藍綠藻到真菌、從植物到動物,地球生命普遍擁有一套內置的時鐘,以24小時為周期調節生理活動,以適應我們這顆行星的自轉和晝夜變化。獲得2017年諾貝爾生理學或醫學獎的三位科學家,在分子水平上揭示了生命時鐘怎樣「滴答」走動。

含羞草葉子在黑暗中仍按晝夜規律開閉,向日葵在太陽尚未升起時已經朝向東方,人在亮如白晝的辦公室里待到半夜照樣犯困——生物的自然節律並不依賴於外界條件刺激,而是由某種內在機制掌控。鐘錶的核心元件是振蕩器,比如鐘擺、機械振子或石英電路,它們產生穩定的周期性振動。

那麼在生物體里,這個振蕩器是什麼?

人們很早就發現生物節律特徵可以遺傳,隨著分子生物學發展,科學界逐漸提出「生物鐘基因」的設想。20世紀70年代,美國加州理工學院的西摩·本澤和羅納德·科諾普卡用果蠅做實驗,篩選相關的基因突變。

果蠅的破蛹羽化有著特定節律,野生品種只在一天的特定時刻出蛹,周期是24小時。科諾普卡等人培養並篩選出了周期更長或更短,甚至沒有周期的果蠅,發現它們在基因組的同一區域發生突變,從而定位到了生物鐘基因,命名為「周期」基因。但限於技術發展水平,人們當時無法弄清這個基因的代碼序列,因為克隆果蠅DNA的技術於70年代晚期才出現。

1984年,三名美國科學家,傑弗里·霍爾、邁克爾·羅斯巴什和邁克爾·揚克隆出了「周期」基因,並把它編碼的蛋白質命名為PER。他們發現,果蠅體內的PER蛋白質濃度有規律地變動,振蕩周期正是24小時。至此,人們找到了生物鐘的「振蕩器」,看到了它的振蕩。

時隔30多年後,霍爾、羅斯巴什和揚因為這一研究發現最終摘獲諾獎。霍爾在獲獎後接受美聯社採訪時說,弄清這一機制有助於解決因晝夜節律紊亂導致的睡眠問題。

諾貝爾物理學獎

解讀引力波

探測「時空的漣漪」

美國科學家雷納·韋斯、巴里·巴里什和基普·索恩獲得2017年諾貝爾物理學獎,就是因為他們在「激光干涉引力波天文台」(LIGO)項目和發現引力波方面的貢獻。

什麼是引力波?

根據愛因斯坦的相對論,時空是可以彎曲的,有質量的物體在其中運動,就會產生引力波。這就好比石頭丟進水裡會產生水波,引力波因此常被稱作「時空的漣漪」。

但普通物體產生的這種引力波極為微弱,連愛因斯坦自己也認為很可能無法觀測到。事實上,LIGO項目所觀測到的兩個黑洞合併產生的引力波,在儀器中只引起了比原子核還小得多的變化。相對論發表百年來,許多預言,如水星近日點進動以及引力紅移效應都已獲證實,但引力波一直沒被探測到。因此,引力波又被稱作廣義相對論實驗驗證中最後一塊缺失「拼圖」。

引力波有什麼用?

引力波開啟了人們認識宇宙的新途徑。過去科學界探測宇宙,多是依靠光學望遠鏡、射電望遠鏡等手段,而引力波是與光不同的信息載體。

通過分析引力波信號,我們可以判斷出遙遠宇宙中發生了什麼。引力波的波形特徵與聲波相似,這也是為什麼科學家曾將其轉換成聲波,作為「宇宙的聲音」播放出來。通過探測引力波來分析宇宙中的各種事件,就像根據樂器聲波判斷樂器的質地種類,以及樂手的演奏手法。

至於引力波在實際生活中有什麼應用,科學家說,包括時空旅行這樣的科幻設想還早得很,而利用引力波的宇宙通信目前來看也很遙遠。不過引力波的發現無疑打開了一扇新的大門,給未來增加更多新的可能。


喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 網易新聞 的精彩文章:

大媽在景區賣煎餅 黃金周每日進賬8千元
神跨界!昔日女航天員就任加拿大總督
充188元獲熱播劇「資源庫」還成代理?律師:或涉侵權
中秋之夜 「明月項鏈」現身天空
黃金周過半:4.61億人次出遊花了3856億 你花多少?

TAG:網易新聞 |