當前位置:
首頁 > 新聞 > 英特爾中國研究院院長宋繼強:融合 AI 與 SI 推進智能機器人產業

英特爾中國研究院院長宋繼強:融合 AI 與 SI 推進智能機器人產業

雷鋒網按:本文作者宋繼強,英特爾中國研究院院長。

英特爾中國研究院院長宋繼強:融合 AI 與 SI 推進智能機器人產業

宋繼強

今天,我們正在擁抱一個萬物智能互聯的新世界。越來越多的物和設備通過網路實現互聯互通,讓數據呈現爆發之勢。數據洪流洶湧而至,數據正在成為技術領域最重要的驅動力。人工智慧、自動駕駛、5G 和VR/MR 等一系列前瞻性技術的出現,令我們有機會充分釋放這些數據的潛能,不斷升級人類生活體驗。

非常高興從今天開始,我們在雷鋒網開設英特爾中國研究院專欄。藉助這個平台,我們希望與大家分享並交流英特爾對於前瞻技術趨勢的觀察,探討萬物智能互聯的當下與未來。作為專欄系列文章的開篇,讓我們先從機器人、人工智慧的視角切入,探究數據洪流時代的產業機遇。

融合 AI 與 SI 推進智能機器人產業

機器人作為人工智慧最重要的應用領域,一直飽受關注。好萊塢大片中經常出現的智能機器人為大眾設置了很高的預期,而現實的服務機器人的智能能力遠未達標。伴隨著近來深度學習催熱的這一波人工智慧大潮,智能機器人產業如何破局是一個很重要的問題。我認為兩個方面非常關鍵:一個是人工智慧(AI: Artificial Intelligence)與智能交互(SI: Smart Interaction)深度融合;另一個是智能機器人的安全性。關於安全性我們留到以後再談,今天重點探討AI與SI的融合。

AI 在學術界有一個比較常用的定義,就是要了解智能的實質,並且要能夠生產出一種像人一樣,以智慧的方式對外界輸入作出反應的智能機器。這個學科的最終目的是讓機器具有智能的反應能力,所以智能機器人可以看做是人工智慧的終極目標。

了解智能的實質有兩種辦法:

  • 一種是通過哲學或者心理學的方法,從外部觀察人的行為來推測人是以怎樣的智能方式在思考;

  • 另外一種是把人腦切開看看神經解剖結構,並且通過腦活動檢測技術和精心設計的實驗來發現智能活動的規律。

當我們對智能有了一個認識(未必正確、但至少有了模型),那怎樣把機器變得智能就需要數學家、計算機科學家、自動化專家去鑽研。所以,人工智慧相關的學科很多,除了軟的理論、模型和演算法,還需要依賴硬體落地,比如說需要晶元去給它提供強有力的計算和存儲。對於機器人這種智能體,還需要有複雜的系統控制技術支撐。

現在這一波人工智慧的熱潮,實際上也是受益於目前最新的計算和存儲的改進。神經網路技術來自於腦的神經元結構啟發,但它跟腦的處理過程完全不一樣。它是通過大規模的數據去訓練,然後機器從數據中學習一些內在的規律,形成一個模型,再用這個模型去推測新的數據。這稱為一個機器學習的過程,它需要很多的存儲和計算能力,而我們現在正處於一個非常適合它大發展的時代。

為什麼非常合適呢?因為受益於摩爾定律,過去20年硬體的能力獲得大幅發展,其中單位成本的計算能力提高1.5萬倍、存儲能力提高3萬倍。通訊技術從有線發展到無線,現在正向5G邁進。這意味著我們不僅可以讓智能機器具有強大的大腦,在需要的時候還可以靈活利用雲端的能力。雲、端結合釋放持續學習和改善的能力。

而 AI 的演算法像深度學習,通過統計和大數據迎來一個非常大的飛躍,它在圖像識別還有語音識別上已經超越了人類的能力。而且我們看到更大的數據也成為了可能,例如一輛無人駕駛汽車一天就產生4TB 的數據,而且是不同源的、異構的數據。有了這些數據以後就要考慮怎樣去處理它來產生實時的價值,提供可靠、高質量的服務。

現在深度學習一枝獨秀,但是處理這麼多種數據完成目標任務只靠這一類演算法是不夠的。所以,NN+X 就代表要讓神經網路加各種新的技術,並且要正視人工智慧演算法的局限性。引用一下機器人界也是人工智慧學界的大牛 Rodney Brooks 教授(人工智慧專家,行為學派傑出代表,美國國家工程院院士,iRobot、Rethink Robotics 創始人,Baxter 之父,MIT CSAIL前主任)的觀點,他主張先不去管用什麼樣的邏輯模型或者什麼樣的神經網路模型去模擬人的思維過程,而要通過實際的智能體去感知,然後去研究怎樣通過全系統優化去做出正確的反應。他認為特別是產業界不要沉迷於某一種技術,重要的是根據實際需要去使用技術,為人類提供價值。他認為第一輪AI可以提供的價值是在五年左右,在輔助駕駛和自動駕駛這個領域,第二輪就是十年左右,可以在助老機器人領域提供很大的社會價值。

關於在機器中加入智能能力,整個產業界是在分三步走。

  • 首先是把一些不聯網的設備連了網,連網以後設備就有了信息傳遞和更新的能力,同時它也可以結合社交服務提供客戶價值。但這個還不算多麼智能,只算把設備互聯了。

  • 第二步就是我們現在所處的智能設備這個級別,其實就是手機上能夠提供的這些智能服務,把視覺、聽覺識別的能力加進去,再結合數據挖掘技術和知識庫提供服務。這些智能機器能夠聽和看,但還不是聽懂和看懂。

  • 終極目標是第三步,就是自主機器。

現在我們基本上已經跨越了第二步,正在向第三步邁進。但這個發展過程不是線性的,因為從第二步到第三步會越來越複雜,不僅要理解環境和行為,還要能理解人的情緒。因為機器人服務的是人,如果不能理解人的情緒、達到交流共識的話,就沒法提供很好的服務。

英特爾中國研究院院長宋繼強:融合 AI 與 SI 推進智能機器人產業

從CT到RT,需要人工智慧技術與其它技術緊密合作完成「感知-認知-執行」的人機交互閉環

智能機器人就是典型的自主系統。如上圖所示,從現在的計算機技術(CT: Computer Technology)到未來的機器人技術(RT: Robot Technology),需要人工智慧技術與其它技術緊密合作完成「感知-認知-執行」的人機交互閉環。機器人工作在一個開放的環境里,服務的是不願遵守刻板交互規則的普通消費者。從整個交互過程來講有很多不確定性,沒有AI演算法能夠保證不出問題,因此必須結合其它技術來滿足消費者對智能機器人的預期。我認為智能交互(SI)是最佳選擇,因為它可以充分通過機器人的移動性和主動交互能力來利用人這個通用智能體去補足人工智慧。

舉兩個例子來說明智能交互的威力。我們知道在視覺識別物體的時候,角度和遮擋都會影響識別效果。對於機器人來講,它可以利用移動性主動選擇一個好的角度、避開遮擋來準確識別物體。再進一步,在場景理解的時候,對於能夠準確分割的物體,如果不能確信是什麼的話(例如凳子還是茶几),機器人可以主動組織一個問句來詢問人。由此我們可以看出,靈活利用機器人的主動移動和交互能力可以顯著提升整體服務能力,促進智能機器人的產業化。

總結

簡而言之,我認為在智能機器人的商業化迭代方面,首先要保證服務能力達標,然後在這個能力要求下選擇合適的人工智慧演算法,配合靈活的智能交互的方案一起去達成這個能力。隨著演算法能力和硬體技術的提高,在保持服務能力的前提下,逐步擴大 AI 的比重,是通過商業化發展推動AI技術發展的正循環之路。

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 雷鋒網 的精彩文章:

蘋果超小米、Fitbit,成第一大可穿戴設備廠商
京都獎獲得者金出武雄教授:「像外行一樣思考,像專家一樣實踐」
專訪樂聚機器人冷曉琨:步態是人形機器人的核心
不好意思,00後黑客CEO登場了!

TAG:雷鋒網 |

您可能感興趣

英特爾中國研究院院長宋繼強:創新來自多元化融合
前硬蛋科技 CTO、微軟亞洲研究院創始人加盟科大訊飛任研究院聯席院長
西班牙AI研究院副院長:AI+教育的終極奧義是「個人助理」
斯坦福大學成立以人為本AI研究院 計算機科學教授李飛飛任院長
波蘭考慮禁止公共機構使用華為;聯想CTO出任東南大學AI兼職院長
訊飛教育技術研究院執行院長劉邦奇:「智能+」推動教學創新
新東方AI研究院院長瞿煒:AI要在教育場景落地必須克服20個挑戰|全球AI+智適應教育峰會
世界級AI專家申省梅加盟澎思科技 ,任首席科學家及新加坡研究院院長
清華大學國家金融研究院院長朱民:人工智慧是科技的最終未來
重磅|李世鵬博士加盟科大訊飛,擔任訊飛 AI 研究院聯席院長
工業4.0研究院院長鬍權:開源工業互聯網引領中國製造高質量發展
INT#14 寒武紀研究院院長杜子東:分形馮諾依曼機器學習計算機
優客工場成立區塊鏈研究院,Astar 合伙人馬治宇擔任院長
前微軟副院長李世鵬加入科大訊飛,任訊飛 AI 研究院聯席院長
斯坦福大學成立以人為本AI研究院 李飛飛任院長
美國國家醫學院院長稱:制服高血壓,有賴於數據、生物技術和生物醫學科學融合
北京智源人工智慧研究院成立,北京大學計算機系主任黃鐵軍擔任首任院長
清華人工智慧研究院院長張鈸:我與AI的關係是 「先結婚後戀愛」
CMU 計算機科學學院終於迎來新院長
爭鳴:NIH院長辯護科學家有權使用人類胎兒組織開展研究