當前位置:
首頁 > 新聞 > 上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

雷锋网AI科技评论按:ICCV 全称为 IEEE International Conference on Computer Vision,即国际计算机视觉大会)与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议,每两年召开一次的 ICCV 今年将在意大利威尼斯举办。

由上海交通大学人工智能实验室李泽凡博士实现,倪冰冰教授、张文军教授、杨小康教授,高文院士指导的论文《基于高阶残差量化的高精度网络加速》(Performance Guaranteed Network Acceleration via High-Order Residual Quantization)已经被 ICCV2017 录用,以下为上海交通大学人工智能实验室杨蕊所做的详细解读,雷锋网AI科技评论经授权引用,并做了不改动原意的修改和编辑。

论文链接:http://pan.baidu.com/s/1bMgbme

简介

随着人工智能在各个领域的应用中大放异彩,深度学习已经成为街头巷尾都能听到的词汇。然而网络越来越深,数据越来越大,训练越来越久,如何在保证准确率的情况下加速网络以及甚至网络在 CPU 或者移动设备上进行训练与测试变成了迫在眉睫的问题。

除了网络 pruning,网络稀疏近似等等,网络二值化也是常见的网络加速方式。通常情况下,我们用+1 和-1 来代替原来的浮点数数值,使得卷积中的乘法操作变成加减操作,而如果输入和权重同时二值化,乘法操作就会变成异或操作。这看似是一种合理的网络压缩方式,然而如果单纯的运用阈值二值化方法对网络输入进行二值化处理,那么模型最后的精度将无法得到保证。但如果不运用二值化方法对网络进行加速,那么就又无法利用二值化所带来的在计算和存储方面的优势。

而这篇文章提出的 HORQ(High Order Residual Quantization)方法提出了一种针对输入的高阶残差二值量化的方法,既能够利用二值化计算来加快网络的计算,又能够保证训练所得的二值化网络模型的较高的准确率。

方法

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图一 HORQ 结构

图一展示了如何用 HORQ 方法将一个普通的卷积层进行残差量化。

对于一个神经网络常规的卷积层 Y=X?W, 其中 X 是网络的实值输入,W 是网络的实值权值,Y 是网络层的输出。要对这个卷积层进行高阶残差近似,先按照 XNOR-net[1] 的方法对这个卷积层进行一阶二值近似:

X≈β_1 H_1,W≈αB

Y_1=αβ_1 H_1?B

随后,就可以由此定义输入残差张量:

R_1 (X)=X-β_1 H_1

继续对残差进行二值量化,就可以得到输入 X 的二阶二值近似:

R_1 (X)≈β_2 H_2,W≈αB

Y_2=αβ_2 H_2?B

那么,现在可以定义输入 X 的二阶残差近似:

Y≈Y_1+Y_2

类似的,我们可以进而定义出输入 X 的高阶残差,以及相应的高阶残差量化:

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

由此,对卷积层进行二阶(高阶)残差量化,并加速其运算。

实验结果

这篇文章的实验部分在 MNIST 和 CIFAR-10 数据集上进行测试,发现 HORQ-net 对比之前对输入简单采取一阶阈值二值化的方法有喜人的优势:

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图二 MNIST 实验

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图三 Cifar-10 实验

我们发现,对于二阶残量化方法,该方法将网络的大小降低了约 32 倍,同时速度上有 30 倍的提升,相比 XNOR-net 在两个 MNIST 和 CIFAR-10 上测试准确率均有提升,并且展现出了可在 CPU 上进行网络训练的潜能。

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图四 HORQ 方法加速比性能分析

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图五 HORQ 方法加速比与量化阶数分析

性能分析

HORQ 方法对卷积层计算的的加速比跟卷积核大小,feature map 数量,以及残差量化的阶数都有较大关系。这些关系体现在图四和图五中。而且,如图六所示,基于二值化的模型存储空间可以得到大幅度的降低。

上海交通大学团队与高文院士ICCV录用论文:精度保证下的新型深度网络压缩框架

图六

该论文提出的 HORQ 方法可以作为一个基础的二值量化的方法用于网络的输入二值化中,能够在保证网络模型精度的前提下,利用二值量化的技术提升网络的计算速度,而且同时可以根据实际的硬件需要来调整残差阶数以适应需求。

这个方法有着很大的发展、使用前景。对于一般的深度学习网络,HORQ 方法能能够很大程度上加速深度网络的计算速度。由于网络的每层输入的输入和权值都被二值化,模型的前向传播时间得到大大降低,同时存储模型所需的空间得到大大压缩,使得在资源受限的小运算平台,例如手机和笔记本上运行大规模深度网络模型成为可能。另外,高阶残差量化的方法能够使得网络精度得到保证,使得网络不再会因为简单二值化方法而造成的精度大幅下降。

参考文献:

[1]M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary convolutional neu-ral networks. In European Conference on Computer Vision, pages 525–542. Springer, 2016.

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 雷锋网 的精彩文章:

传感器融合:通向自动驾驶时代的关键一步
如何评价谷歌推出的 ARCore?

TAG:雷锋网 |

您可能感興趣

「深度好文」大陸PCB 產業風頭正勁
深度七項橫評:超頻三東海印象FRGB CPU散熱器
IBM正在研製通用型深度學習晶元
AI深度學習:刷新智慧醫療應用新高度
深挖大數據價值,浩瀚深度MWCS18發布高性能DPI新品
資訊:NX新品 堪比深度強襲的幻之機體 高達MK-V
5款高濃度「VC精華」深度測評
VIDAA AI塑行業標杆 海信E7A電視開啟人工智慧深度交互
深度丨UNDERCOVER和高橋盾的世界觀!
深度解讀華為EMUI9.1帶來的技術創新產物:華為方舟編譯器和EROFS超級文件系統
RISC-V日益壯大,芯來科技與晶心科技宣布建立全面深度合作夥伴
深度解讀華為EMUI9.1技術創新產物:華為方舟編譯器和EROFS超級文件系統
用於深度強化學習的結構化控制網路(ICML 論文講解)
CMU 深度學習導論更新
IBM 的深度學習平台 FfDL
NVIDIA 遷移學習工具包:用於特定領域深度學習模型快速訓練的高級SDK
神州數碼:深度布局「雲+教育」,定義中國MSP
採用C 的最簡單的廣度優先搜索BFS和深度優先搜索DFS應用
學術報告 NVIDIA何琨:NVIDIA 深度學習加速工具
深度 | 使用高斯過程的因果推理:GP CaKe 的基本思路