當前位置:
首頁 > 新聞 > Kaggle實戰分享:谷歌YouTube8M視頻理解技術剖析

Kaggle實戰分享:谷歌YouTube8M視頻理解技術剖析

主要從三個方面對視頻進行建模:標籤相關性、視頻的多層次信息,以及時間上的注意力模型

新智元原創

作者:王鶴達,清華大學電子系多媒體信號與信息處理實驗室

【新智元導讀】谷歌雲和 Kaggle 共同主辦的 YouTube-8M 大規模視頻理解競賽,來自清華大學電子系的團隊主要從三個方面對視頻進行建模:標籤相關性、視頻的多層次信息,以及時間上的注意力模型。最終,他們的方法在 600 多支參賽隊伍中獲得第二。來看他們的實戰技術分享。

論文地址:https://arxiv.org/abs/1706.05150

代碼地址:https://github.com/wangheda/youtube-8m

GIF/38K

理解和識別視頻內容是計算機視覺中的一大主要挑戰。理解視頻也有很多的應用,包括安防監控、智能家居、自動駕駛,還有影視素材搜索和體育視頻分析。今年 2 月,谷歌更新了此前開源的大規模視頻數據集 YouTube-8M,新的數據集除了標籤升級,還包含了預計算的音頻特徵,音頻和視覺特徵以 1 秒的時間粒度同步,有助於進行聯合視聽(時間)建模。

谷歌還同時宣布了與 Kaggle 平台聯合舉辦視頻理解競賽,邀請參與者使用 Youtube-8M 作為訓練數據,利用谷歌雲機器學習,構建視聽內容分類模型。表現最佳的參賽隊伍將獲得 10 萬美元的獎金。

更新後的 YouTube-8M 數據集的 tree-map可視化,分為 24 個高級垂直類別,包括前 200 個最常見的實體,以及每個類別的前5個實體。

YouTube-8M 數據集中前 18 個高級類別里的視頻示例。

6 月 30 日,比賽公布了結果。在剛剛結束的 CVPR 2017 YouTube-8M 大規模視頻理解挑戰賽 Workshop 上,主辦方與各參賽團隊就各自使用的方法進行了交流探討。

下文是獲得第二名的 monkeytyping 團隊所做的賽後總結。團隊成員王鶴達與張騰均來自清華大學電子系多媒體信號與信息處理實驗室,導師為吳及副教授。張騰目前正在攻讀博士學位,研究方向為多媒體事件檢測;王鶴達於今年 7 月碩士畢業,他的研究興趣為推薦系統、自然語言處理與計算機視覺。

競賽結果:法國第一,中國團隊包攬第二、三、四名

Youtube-8M 大規模視頻理解挑戰賽由 Google Cloud 與數據科學競賽網站 Kaggle 共同主辦,從今年 2 月開始,到 6 月初結束,在四個月的時間裡吸引了超過 600 個團隊參加比賽。最終,來自法國國立計算機及自動化研究院(INRIA)的 WILLOW 團隊奪得第一名,第二名的 monkeytyping 團隊來自於清華大學電子系,第三名的 offline 團隊來自於百度深度學習實驗室和清華大學,第四名的 FDT 團隊來自於復旦大學、中山大學和武漢大學。

谷歌 YouTube-8M 大規模視頻理解競賽結果:來自法國國立計算機及自動化研究院(INRIA)的 WILLOW 團隊奪得第一名,第二名的 monkeytyping 團隊來自於清華大學電子系,第三名的 offline 團隊來自於百度深度學習實驗室和清華大學,第四名的 FDT 團隊來自於復旦大學、中山大學和武漢大學。

比賽中所採用的數據集是由 Google 在去年公布的 Youtube-8M 多標籤視頻分類數據集。該數據集有 700 萬樣本,是迄今為止最大的視頻分類數據集,遠超之前被普遍使用的 ActivityNet 和 UCF101 數據集。另外,這個新的數據集的領域也更加多樣,共有 4716 個不同的分類標籤,平均每個視頻的標籤數量為 3-4 個。這些標籤取自 Knowledge Graph 中的實體,是由標註程序根據視頻的文本和視覺信息進行標註,並經人工檢驗和過濾得到的。

儘管在多樣性和數據規模上具有優勢,Youtube-8M 數據集也存在著一些限制。首先,為了減少計算上的門檻,Google 對視頻數據進行了每秒 1 幀的採樣,並使用在 ImageNet 上預訓練的網路對每幀圖像提取特徵。由於數據集中僅包括預提取的特徵,這使得參賽者所能使用的手段變得較為有限。其次,數據集中僅包括視頻級別的類別標註,沒有細粒度的其他種類標註,這限制了數據集應用的場景。第三,數據集中的標籤是由機器生成的,在召回率方面具有一定的缺陷。

我們最終提交的結果是 74 個模型組成的 Ensemble,在最終測試集上取得了 0.8459 的全局平均準確率。我們主要從三個方面對視頻進行建模:標籤相關性,視頻的多層次信息,以及時間上的注意力模型。在標籤相關性建模中,我們採取一種不斷對分類結果進行降維並用於後續預測的網路結構,這種結構可以有效提升多種模型的分類性能。我們使用一種深層卷積神經網路結合循環神經網路的結構,在多個時間尺度上對視頻的幀特徵序列進行建模。另外,我們採取注意力模型對序列模型的輸出進行 Attention pooling 取得了較好的效果。

我們的方法:標籤相關性+時間多尺度信息+注意力模型

1、標籤相關性

我們提出一種鏈式神經網路結構來建模多標籤分類時的標籤相關性。如下圖所示,當輸入是視頻級別特徵時,該結構將單個網路的預測輸出進行降維,並將降維結果與視頻表示層合併成一個表示並再經過一個網路進行預測。網路中最後一級的預測結果為最終分類結果,中間幾級的預測結果也會作為損失函數的一部分。鏈式結構可以重複數級,在視頻級別特徵和專家混合網路上的實驗表明,在控制參數數量相同的條件下,鏈式結構的層級越多,分類性能越好。

不僅視頻級別特徵可以使用鏈式結構,通過如 LSTM、CNN 和注意力網路等視頻表示網路,同樣也可以對幀級別特徵使用鏈式結構網路。在對該網路進行實驗時,我們發現,對其中不同層級的視頻表示網路使用不共享的權重,可以獲得更好的性能。

2、利用時間多尺度信息

由於不同的語義信息在視頻中所佔據的時長不同,在一個時間尺度上進行建模可能會對某些分類較為不利。因此,我們採取一種在時間上進行 pooling 的方式來利用在更大的時間尺度上的語義信息。我們採用 1D-CNN 對幀序列提取特徵,通過時間上 pooling 來降低特徵序列的長度,再通過 1D-CNN 再次提取特徵,如此反覆得到多個不同長度的特徵序列,對每個特徵序列,我們採用一個 LSTM 模型進行建模,將最終得到的預測結果進行合併。通過這種方式,我們利用了多個不同時間尺度上的信息,該模型也是我們性能最好的單模型。

3、注意力模型

我們使用的另一模型是對幀序列的表示採用 Attention Pooling 的方式進行聚合,由於原始序列只反映每幀的局部信息,而我們希望聚合具有一定的序列語義的信息,因此我們對 LSTM 模型的輸出序列進行 Attention Pooling。實驗表明,這種 Attention Pooling 的方式可以提高模型的預測效果。另外,在注意力網路中使用位置 Embedding 可以進一步改善模型性能。

我們對注意力網路輸出的權重進行了可視化,我們發現,注意力網路傾向於給予呈現完整的、可視的物體的畫面更高的權重,而對於沒有明顯前景的、較暗的或呈現字幕的畫面更低的權重。

思考:大規模深度學習中硬體架構,以及視頻分析中演算法效率十分重要

在本次比賽中我們感受非常深的一點是大規模深度學習中硬體架構的重要性。由於我們的伺服器之間僅以千兆網相連,我們無法做到高效的梯度同步,因而無法利用多機集群來加速運算。我們全部的演算法都是在單卡上運行的,其結果是驗證性實驗的迭代周期變長了,並進行了很多目的性不明確的探索。而在工業界的深度學習集群中,萬兆以上的機房網路已經是主流,架構的落後給我們帶來了很多困難。

另外,我們也認識到視頻分析中演算法效率的重要性,在 Youtube-8M 數據集中,預處理階段需要數千小時的 GPU 時間,而各隊所提交的方案又各需要一千至數千小時的 GPU 時間來訓練。在實際應用中,這樣的運行效率常常是無法接受的,這也是為什麼我們認為 Attention Pooling 相關的方法會更加流行的原因。

其他參賽團隊的亮點總結

1. WILLOW 團隊:可學習的Pooling + Context Gating

來自INRIA的WILLOW 團隊使用了基於聚類的 NetVLAD 網路對特徵進行 pooling。他們同時改造了 NetVLAD 網路並融入了對二階統計特性的建模,使網路可以學習 Fisher Vector 表示,並稱之為 NetFV。這兩個網路的優點在於計算量小,可以使用幀採樣,易於並行。他們對門控線性單元 GLU 進行了簡化,將簡化的模塊稱為 Context Gating,通過這個門控單元捕獲特徵之間的相關性。Gated NetVLAD 也是本次比賽中單模型性能最佳的幀級別分類網路。

報告:https://arxiv.org/abs/1706.06905

代碼:https://github.com/antoine77340/Youtube-8M-WILLOW

2. offline 團隊:Fast-forward 序列模型

來自百度IDL與清華大學的 offline 團隊對視頻的時間序列模型進行了探索,他們使用一個多達7層的 LSTM/GRU 網路建模視頻特徵,如此之深的循環神經網路通常難以訓練,他們引入了 Fast Forward 連接,有效緩解了訓練的困難。該模型是本次比賽中單模型性能最佳的時間序列模型。

報告:https://arxiv.org/abs/1707.04555

代碼:https://github.com/baidu/Youtube-8M

新智元正在進行新一輪招聘,飛往智能宇宙的最美飛船,還有N個座位

點擊閱讀原文可查看職位詳情,期待你的加入~


喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 新智元 的精彩文章:

ACL最佳論文:NLP數據成熱點,哈佛教授獲終身成就獎
「ACL 2017最佳論文解讀」NLP數據成熱點,哈佛教授獲終身成就獎
「Kaggle 實戰分享」谷歌 YouTube-8M 大規模視頻理解競賽技術剖析
闢謠:Facebook機器人發明語言系誤讀,專家訪談還原真相
全自動機器學習:ML 工程師屠龍利器,一鍵接收訓練好的模型

TAG:新智元 |

您可能感興趣

【視頻編碼】Content Aware ABR技術
Kaggle 新賽:第二屆 YouTube-8M 視頻理解挑戰賽
Leap Motion倫敦工作室發布North Star AR頭顯視頻
YouTube誤把視頻揭露Alex Jones陰謀
Within與Mozilla合作推出WebVR視頻網站
SoKrispyMedia與谷歌合作推出首部Daydream系列視頻
DeepMind新目標:用YouTube讓AI學習玩視頻遊戲
Instagram發布新視頻服務挑戰YouTube
Radiant Images推出Meridian光場相機,捕捉6DoF VR視頻
Microsoft EdgeChrome下載網頁視頻教程,無需第三方工具!
消息稱Twitter開發Snapchat視頻分享工具
用Python編輯視頻:MoviePy
Instagram進軍視頻市場 正面抗衡YouTube
微軟 Xbox和Windos 10 將支持迪士尼的一站式視頻服務 Movies Anywhere
學習製作VR180視頻,YouTube VR Creator Lab再次開課
視頻 | In The Room
2018 世界盃 ? 瑞士電視頻道 RTS Sport 準確計算「Neymar Rolling」的總時間
官方正式發布視頻預告!Supreme x Public Enemy x Undercover x Dr.Martens 重磅聯名堅定你價值觀!
巔峰巨作Franck Muller 法穆蘭Casablanca系列8880腕錶視頻評測
WhatsApp現在在內部可以播放Facebook和Instagram視頻