轉基因技術——理性客觀對待
解放軍306醫院,病理科基因檢測室,資料
轉基因技術的理論基礎來源於進化論衍生來的分子生物學。基因片段的來源可以是提取特定生物體基因組中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被轉入特定生物中,與其本身的基因組進行重組,再從重組體中進行數代的人工選育,從而獲得具有穩定表現特定的遺傳性狀的個體。該技術可以使重組生物增加人們所期望的新性狀,培育出新品種。
「轉基因」這個在全球承受無盡爭議的辭彙,成為2014年「科學美國人」中文版《環球科學》雜誌年度十大科技熱詞之一。而爭議的關鍵在於人類是否像自己所認為的那樣,已經可以代替上帝改造自然。畢竟人類曾經認為地球是宇宙的中心。
2015年1月13日,歐洲議會全體會議通過一項法令,允許歐盟成員國根據各自情況選擇批准、禁止或限制在本國種植轉基因作物。該法令還將提交歐洲理事會,如一切順利將於今春生效。
1974年,科恩(Cohen)將金黃色葡萄球菌質粒上的抗青黴素基因轉到大腸桿菌體內,揭開了轉基因技術應用的序幕 。
1978年,諾貝爾醫學獎頒給發現DNA限制酶的納森斯(Daniel Nathans)、亞伯(Werner Arber)與史密斯(Hamilton Smith)時,斯吉巴爾斯基在《基因》期刊中寫道:限制酶將帶領我們進入合成生物學的新時代。
1982年,美國Lilly公司首先實現利用大腸桿菌生產重組胰島素,標誌著世界第一個基因工程藥物的誕生。
1992年荷蘭培育出植入了人促紅細胞生成素基因的轉基因牛,人促紅細胞生成素能刺激紅細胞生成,是治療貧血的良藥。轉基因技術標誌著不同種類生物的基因都能通過基因工程技術進行重組,人類可以根據自己的意願定向地改造生物的遺傳特性,創造新的生命類型。[5] 同時轉基因技術在藥物生產中有著重要的利用價值。轉基因技術,包括外源基因的克隆、表達載體、受體細胞,以及轉基因途徑等,外源基因的人工合成技術、基因調控網路的人工設計發展,導致了21世紀的轉基因技術將走向轉基因系統生物技術 2000年國際上重新提出合成生物學概念,並定義為基於系統生物學原理的基因工程與轉基因技術。
技術目的
(1)提取目的基因 從生物有機體複雜的基因組中,分離出帶有目的基因的DNA片段,或者人工合成目的基因,或從基因文庫中提取相應的基因片段和PCR技術進行目的基因的增殖。
(2) 將目的基因與運載體結合 在細胞外, 將帶有目的基因的DNA片段通過剪切、粘合連接到能夠自我複製並具有多個選擇性標記的運輸載體分子(通常有質粒、T4噬菌體、動植物病毒等)上, 形成重組DNA分子。
(3) 將目的基因導入受體細胞 將重組DNA分子注入到受體細胞(亦稱宿主細胞或寄主細胞) ,將帶有重組體的細胞擴增,獲得大量的細胞繁殖體。
(4) 目的基因的篩選 從大量的細胞繁殖群體中,通過相應的試劑篩選出具有重組DNA分子的重組細胞。
(5) 目的基因的表達 將得到的重組細胞,進行大量的增殖,得到相應表達的功能蛋白,表現出預想的特性,達到人們的要求。
主要分類
轉基因過程按照途徑可分為人工轉基因和自然轉基因,按照對象可分為植物轉基因技術、動物轉基因技術和微生物基因重組技術。
人工轉基因
將人工分離和修飾過的基因導入到生物體基因組中,
植物基因工程
由於導入基因的表達,引起生物體的性狀的可遺傳的修飾,這一技術稱之為轉基因技術(Transgene technology)。人們常說的「遺傳工程」、「基因工程」、「遺傳轉化」均為轉基因的同義詞。如今,改變動植物性狀的人工技術往往被稱為轉基因技術(狹義),而對微生物的操作則一般被稱為遺傳工程技術(狹義)。
經轉基因技術修飾的生物體在媒體上常被稱為「遺傳修飾過的生物體」(Genetically modified organism,簡稱GMO)。
自然轉基因
不是人為導向的,自然界里動物、植物或微生物自主形成的轉基因現象,例如慢病毒載體 里的乙型肝炎病毒DNA整合[7] 到人精子細胞染色體上、噬菌體將自己DNA的插入到溶源細胞DNA上,農桿菌 和 花椰菜花葉病毒(CMV)等。
植物轉基因
植物轉基因是基因組中含有外源基因的植物。它可通過原生質體融合、細胞重組、遺傳物質轉移、染色體工程技術獲得,有可能改變植物的某些遺傳特性,培育高產、優質、抗病毒、抗蟲、抗寒、抗旱、抗澇、抗鹽鹼、抗除草劑等的作物新品種,如玉米稻 、北極鱷梨、[8] 轉基因三倍體毛白楊。而且可用轉基因植物或離體培養的細胞,來生產外源基因的表達產物,如人的生長激素、胰島素、干擾素、白介素2、表皮生長因子、乙型肝炎疫苗等基因已在轉基因植物中得到表達。
動物轉基因
動物轉基因就是基因組中含有外源基因的動物。它是按照預先的設計,通過細胞融合、細胞重組、遺傳物質轉移、染色體工程和基因工程技術將外源基因導入精子、卵細胞或受精卵,再以生殖工程技術,有可能育成轉基因動物。
通過生長素基因、多產基因、促卵素基因、高泌乳量基因、瘦肉型基因、角蛋白基因、抗寄生蟲基因、抗病毒基因等基因轉移,可能育成生長周期短,產仔、生蛋多和泌乳量高,轉基因超級鼠比普通老鼠大約一倍。生產的肉類、皮毛品質與加工性能好,並具有抗病性,已在牛、羊、豬、雞、魚等家養動物中取得一定成果。
但由於轉基因動物受遺傳鑲嵌性和雜合性的影響,其有性生殖後代變異較大,難以形成穩定遺傳的轉基因品系。因而,嘗試將外源基因導入線粒體,再送入受精卵中,由於線粒體的細胞質遺傳,其有性後代可能全都是轉基因個體,從而解決這一問題。
微生物重組
在所有轉基因技術中,以微生物基因重組技術應用最為寬泛和常見。
與動植物不同的是,微生物重組技術通常需要用到專門的重組基因載體——質粒。質粒是一種細胞質遺傳因子,因此具有不穩定的遺傳特性。但相比於動植物,微生物[9] 重組技術具有周期短、效果顯著、控制性強的特點,因而廣泛應用於生物醫藥和[10] 酶製劑行業。經過多年的理論奠基,現已在微生物領域中開發出酵母表達系統、大腸桿菌表達系統和絲狀真菌表達系統,其中畢赤酵母表達系統和大腸桿菌表達系統最受歡迎,具有表達效率高(外源蛋白占細胞總蛋白的10%至40%)、生產成本低的特點,一般常見的諸如胰島素、白細胞介素、α-高溫澱粉酶、重組人p53腺病毒注射液、啤酒酵母乙肝疫苗、抗生素 、飼料用木聚糖酶、殼聚糖酶等都由這兩種表達系統生產的。
技術原理
轉基因技術的原理是將人工分離和修飾過的優質基因,導入到生物體基因組中,從而達到改造生物的目的。由於導入基因的表達,引起生物體的性狀,可遺傳的修飾改變,這一技術稱之為人工轉基因技術(Transgene technology)。
人工轉基因技術就是把一個生物體的基因轉移到另一個生物體DNA中的生物技術。具有不確定性。常用的方法和工具包括顯微注射、基因槍、電破法、脂質體等。轉基因最初用於研究基因的功能,即把外源基因導入受體生物體基因組內(一般為模式生物,如擬南芥或斑馬魚等),觀察生物體表現出的性狀,達到揭示基因功能的目的。
植物
轉基因植物是基因組中含有外源基因的植物。通過原生質體融合、細胞重組、遺傳物質轉移、染色體工程技術獲得,改變植物的某些遺傳特性,培育優質新品種,或生產外源基因的表達產物,如胰島素等。
在過去的二十年里,隨著分子生物學各領域的不斷發展,植物基因的分離、基因工程載體的構建、細胞的基因轉化、轉化細胞的組織培養、植株再生及外源基因表達的檢測等各項技術日趨成熟和完善,有關植物基因工程的研究日新月異,許多以前根本不可能的基因轉化工作在越來越多的植物上獲得成功。
研究轉基因植物的主要目的是提高多肽或工業用酶的產量,改善食品質量,提高農作物對蟲害及病原體的抵抗力。常規的藥用蛋白大部分是利用生化的方法提取或微生物發酵獲得的,這類活性物質一般在活細胞中含量甚微,且提取過程複雜,成本高,遠遠滿足不了社會的需要。應用轉基因植物來生產這些藥用蛋白,包括疫苗、抗體、干擾素等細胞因子,可以利用植物大田栽種的方式大量生產,大幅度降低生產成本,提高產量,還可以獲得常規手段無法獲得的藥物。
利用植物來生產疫苗的最大優點是他可以作為食品直介面服。通過各種植物轉基因技術將多台疫苗基因轉入植物,從而得到表達多肽疫苗的轉基因植物。隨著抗體基因工程能將抗體基因(從小的活性單位到完整抗體的重、輕鏈基因)從單抗雜交瘤中分離出來,人們就開始想辦法利用轉基因植物來表達這些抗體。
1989年Hiatt將鼠雜交瘤細胞產生的抗體基因轉入煙草細胞獲得了植物抗體,並且發現植物抗體具有雜交瘤來源抗體同樣的抗原結合能力,既有功能性。在這之後,全長抗體、單域抗體和單鏈抗體在轉基因植物中均獲得成功表達。用植物抗體進行局部免疫治療將是一個引人矚目的領域,應用高親和性抗體進行局部治療可以治癒齲齒及其它一些常見病。植物轉基因可獲得更多的新品種,蔬菜,水果,花卉都能夠在保留其優良品質的情況下優化。
動物
它是按照預先的設計,融合重組細胞、遺傳物質轉移、染色體工程和基因工程技術將外源基因導入精子、卵細胞或受精卵,再以生殖工程技術,有可能育成轉基因動物。通過生長素基因、多產基因、促卵素基因、高泌乳量基因、瘦肉精基因、角蛋白基因、抗寄生蟲基因、抗病毒基因等基因轉移,可能育成優良的可養殖品種。
基因動物是指用實驗導入的方法將外源基因在染色體基因內穩定整合併能穩定表達的一類動物。1974年,Jaenisch應用顯微注射法,在世界上首次成功地獲得了SV40DNA轉基因小鼠。其後,Costantini將兔-珠蛋白基因注入小鼠的受精卵,使受精卵發育成小鼠,表達出了兔β-珠蛋白;Palmiter等把大鼠的生長激素基因導人小鼠受精卵內,獲得「超級」小鼠;Church獲得了首例轉基因牛。到目前為止,人們已經成功地獲得了轉基因鼠、雞、山羊、豬、綿羊、牛、蛙以及多種轉基因魚。
還可將轉基因動物作為生物工廠(Biofactories),包括,乳腺生物反應器和輸卵管生物反應器等,如以轉基因小鼠生產凝血因子IX、組織型血纖維溶酶原激活因子(t-PA)、白細胞介素2、α1-抗胰蛋白酶,以轉基因綿羊生產人的α1-抗胰蛋白酶,以轉基因山羊、奶牛生產LAt-PA,以轉基因豬生產人血紅蛋白等,這些基因產品具有高效、優質、廉價與相應的人體蛋白具有同樣的生物活性,且多隨乳汁分泌,便於分離純化,基於系統生物學的發展,轉基因系統生物技術-合成生物學成為不僅單基因而且多基因乃至基因組設計、合成與轉基因的新一代生物技術。
但由於人工轉基因動物,它們受遺傳鑲嵌性和雜合性的影響,其有性生殖後代變異較大,難以形成穩定遺傳的轉基因品系。因而,嘗試從受體動物細胞中分離出線粒體,以外源基因對其進行離體轉化,再將人工轉基因線粒體導入受精卵,所發育成的人工轉基因動物,雌性個體外培養的卵細胞與任一雄性個體交配或體外人工受精,由於線粒體的細胞質遺傳,其有性後代可能全都是人工轉基因個體。
轉化方法
遺傳轉化的方法按其是否需要通過組織培養、再生植株通常可分成兩大類,第一類需要通過組織培養再生植株,常用的方法有農桿菌介導轉化法、基因槍法;另一類方法不需要通過組織培養,比較成熟的主要有花粉管通道法,花粉管通道法是中國科學家提出的。
農桿菌介導轉化
農桿菌是普遍存在於土壤中的一種革蘭氏陰性細菌,它能在自然條件下趨化性地感染大多數雙子葉植物的受傷部位,並誘導產生冠癭瘤或髮狀根。根癌農桿菌和髮根農桿菌中細胞中分別含有Ti質粒和Ri質粒,其上有一段T-DNA,農桿菌通過侵染植物傷口進入細胞後,可將T-DNA插入到植物基因組中。
因此,農桿菌是一種天然的植物遺傳轉化體系。人們將目的基因插入到經過改造的T-DNA區,藉助農桿菌的感染實現外源基因向植物細胞的轉移與整合,然後通過細胞和組織培養技術,再生出轉基因植株。
農桿菌介導法起初只被用於雙子葉植物中,自從技術瓶頸被打破之後,農桿菌介導轉化在單子葉植物中也得到了廣泛應用,其中水稻已經被當作模式植物進行研究。
花粉管通道法
在授粉後向子房注射含目的基因的DNA溶液,利用植物在開花、受精過程中形成的花粉管通道,將外源DNA導入受精卵細胞,並進一步地被整合到受體細胞的基因組中,隨著受精卵的發育而成為帶轉基因的新個體。該方法於80年代初期由中國學者周光宇提出,中國目前推廣面積最大的轉基因抗蟲棉就是用花粉管通道法培育出來的。該法的最大優點是不依賴組織培養人工再生植株,技術簡單,不需要裝備精良的實驗室,常規育種工作者易於掌握。
核顯微注射法
核顯微注射法是動物轉基因技術中最常用的方法。它是在顯微鏡下將外源基因注射到受精卵細胞的原核內,注射的外源基因與胚胎基因組融合,然後進行體外培養,最後移植到受體母畜子宮內發育,這樣分娩的動物體內的每一個細胞都含有新的DNA片段。-這種方法的缺點是效率低、位置效應(外源基因插入位點隨機性)造成的表達結果的不確定性、動物利用率低等,在反芻動物還存在著繁殖周期長,有較強的時間限制、需要大量的供體和受體動物等特點。
詳細步驟:在顯微鏡下,用一根極細的玻璃針(直徑1-2微米)直接將DNA注射到胚胎的細胞核內,再把注射過DNA的胚胎移植到動物體內,使之發育成正常的幼仔。用這種方法生產的動物約有十分之一是整合外源基因的轉基因動物。
基因槍法
利用火藥爆炸或高壓氣體加速(這一加速設備被稱為基因槍),將包裹了帶目的基因的DNA溶液的高速微彈直接送入完整的植物組織和細胞中,然後通過細胞和組織培養技術,再生出植株,選出其中轉基因陽性植株即為轉基因植株。與農桿菌轉化相比,基因槍法轉化的一個主要優點是不受受體植物範圍的限制。而且其載體質粒的構建也相對簡單,因此也是轉基因研究中應用較為廣泛的一種方法。
精子介導法
精子介導的基因轉移是把精子作適當處理後,使其具有攜帶外源基因的能力。然後,用攜帶有外源基因的精子給發情母畜授精。在母畜所生的後代中,就有一定比例的動物是整合外源基因的轉基因動物。
同顯微注射方法相比,精子介導的基因轉移有兩個優點:首先是它的成本很低,只有顯微注射法成本的1/10。其次,由於它不涉及對動物進行處理,因此,可以用生產牛群或羊群進行實驗,以保證每次實驗都能夠獲得成功。
核移植轉基因法
體細胞核移植是一種轉基因技術。該方法是先把外源基因與供體細胞在培養基中培養,使外源基因整合到供體細胞上,然後將供體細胞細胞核移植到受體細胞——去核卵母細胞,構成重建胚,再把其移植到假孕母體,待其妊娠、分娩,便可得到轉基因的克隆動物。
體細胞核移植法
先在體外培養的體細胞中進行基因導入,篩選獲得帶轉基因的細胞。然後,將帶轉基因體細胞核移植到去掉細胞核的卵細胞中,生產重構胚胎。重構胚胎經移植到母體中,產生的仔畜百分之百是轉基因動物。
鑒別方法
人工轉基因技術和人工雜交技術是兩個概念,植物雜交技術是自體基因重組過程,不改變繁殖特性,但有組合優質基因的幾率,基本不會產生變異基因,即沒有剝奪其基本特性的作物。它可通過原生質體之間的融合、細胞自體細胞重組、自體遺傳物質自由組合轉移、自體染色體工程技術獲得,不改變植物的遺傳特性,可以提高優質率水平,從而培育出高產、優質、抗病毒、抗蟲、抗寒、抗旱、抗澇、抗鹽鹼、等的作物新品種。
人工雜交技術可分為植物雜交和雜交畜牧,植物雜交是指近緣種間的有性繁殖,嫁接不屬於此列。利用體細胞雜交技術可以做到遠緣的雜交(比如紫菜甘藍、番茄馬鈴薯)。
雜交畜牧是指兩個不同近交系之間,優質品種的雌雄畜牧進行有計劃的交配,雜交所產生的第一代動物,具有兩親本遺傳的優質特性,用於改良家畜品質,有著正常的生長周期和正常繁殖能力的畜牧品種。
自從人類耕種作物以來,我們的祖先就從未停止過作物的遺傳改良。過去的幾千年里農作物改良的方式主要是對自然突變產生的優良基因和重組體的選擇和利用,通過隨機和自然的方式來積累優良基因。遺傳學創立後近百年的動植物育種則是採用人工雜交的方法,進行優良基因的重組和外源基因的導入而實現遺傳改良。
因此,人工轉基因技術與傳統技術有著同樣的目的,其本質都是通過獲得優良基因進行遺傳改良。但在基因轉移的範圍和效率上,人工轉基因技術與傳統育種技術有兩點重要區別。
第一,傳統技術一般只能在生物種內個體間實現基因轉移,而人工轉基因技術所轉移的基因則不受生物體間親緣關係的限制。
第二,傳統的雜交和選擇技術一般是在生物個體水平上進行,操作對象是整個基因組,所轉移的是大量的基因,不可能準確地對某個基因進行操作和選擇,對後代的表現預見性較差。而人工轉基因技術所操作和轉移的一般是經過明確定義的基因,功能清楚,後代表現可準確預期。
因此,人工轉基因技術是對傳統技術的發展和補充。將兩者緊密結合,可相得益彰,大大地提高動植物品種改良的效率。
應用領域
目前,轉基因技術已廣泛應用於醫藥、工業、農業、環保、能源、新材料等領域 。
藥物領域
目前已有基因工程疫苗、基因工程胰島素和基因工程干擾素等藥物。 其使用基因拼接技術或DNA重組技術(即轉基因技術),指按照人們的意願,定向地改造生物的遺傳性狀,產生出人類需要的基因產物,以此生產出的藥物原料和藥品。
基因工程疫苗
使用DNA重組生物技術,把天然的或人工合成的遺傳物質定向插入細菌、酵母菌或哺乳動物細胞中,使之充分表達,經純化後而製得的疫苗。應用基因工程技術能制出不含感染性物質的亞單位疫苗、穩定的減毒疫苗及能預防多種疾病的多價疫苗。
已經商業化使用的部分基因工程疫苗:
乙肝疫苗 、丙肝疫苗、百日咳基因工程疫苗、狂犬病基因工程滅活疫苗 、腸道病毒71型基因工程疫苗、產腸毒素大腸桿菌基因工程疫苗、輪狀病基因工程疫苗、Asia Ⅰ型口蹄疫病毒(FMDV)的感染表位重組蛋白疫苗 、弓形蟲基因工程疫苗、腸出血性大腸桿菌基因工程疫苗等。
基因工程胰島素
在2013年舉辦的第七屆聯合國糖尿病日主題活動上,與會專家指出「中國目前糖尿病患者數達1.14億,全球的1/3」。糖尿病的病因是胰島素分泌缺陷或其生物作用受損,所以最常用的治療方法就是以注射胰島素的方式補充人體內胰島素。要獲得胰島素,最初只能從牛和豬的胰臟中提取。但是,每100千克動物胰腺只能提取出4-5克胰島素,產量低,遠不能滿足患者的需求。
1980年代初,美國一家公司通過轉基因技術實現了人體胰島素的工業生產。其原理是,將人的基因中負責表達胰島素的那一段「剪切」下來,轉入大腸桿菌或者酵母菌里,通過後者的快速增殖達到人體胰島素的大量生產。全球大多數糖尿病人才得到了很好的胰島素治療。
基因工程乙肝疫苗產業化案例:
國家衛計委2013年7月26日公布,全球3.5億乙肝病毒攜帶者中有近1億中國人,全球每年大約70萬病毒性肝炎相關死亡人群中我國占近半。我國乙肝報告病例多年來居所有法定傳染病的首位,約佔總傳染病總數的1/3。
20世紀80年代,轉基因乙肝疫苗被研製成功。其原理是,將乙肝病毒基因中負責表達表面抗原的那一段「剪切」下來,轉入酵母菌里。被轉入乙肝病毒基因的酵母菌生長時,就會生產出乙肝表面抗原。而酵母菌是一種能快速生長繁殖的生物,於是乙肝表面抗原就被大量生產出來。這種疫苗技術1994年被引進中國,隨後建成了兩條生產線。1997年9月1日衛生部以衛葯發(1997)第57號文下達了《關於基因乙肝疫苗取代血源性乙肝疫苗有關問題的通知》,規定:1998年1月起停止陽性血漿的採集;已採集的陽性血漿1998年上半年允許投料生產;合格血源乙肝疫苗使用期限截止於2000年底。2001年以後全部使用高安全性的基因工程乙肝疫苗。
同年,利用酵母菌的轉基因乙肝疫苗被正式批准生產。從此,乙肝疫苗終於得以大量生產,中國政府也開始著手給兒童免費接種、甚至免費補種乙肝疫苗。2009至2011年,我國開展了15歲以下人群免費補種乙肝疫苗工作,共補種6800萬餘人。全面、免費疫苗接種的開展,使我國5歲以下兒童慢性乙肝感染率降至1%以下;我國每年乙肝新發感染者人數也降到了10萬。根據衛計委的數據,1992年至2009年,全國預防了8000萬人免受乙肝病毒感染,減少了近2000萬乙肝病毒表面抗原攜帶者,減少肝硬化、肝癌等引起的死亡430萬人。
食品領域
利用分子生物學技術,將某些生物的基因轉移到農作物中去,改造生物的遺傳物質,使其在性狀、營養品質、消費品質方面向人類所需要的目標轉變,從而得到轉基因農作物。以轉基因生物為直接食品,作為原料加工生產的食品,以及餵養家畜得到的衍生食品,在廣義上都可以稱為轉基因食品。因其安全性被廣泛質疑,國際社會對其尚存有很大爭議。
它的研究已有幾十年的歷史,但真正的商業化是近十年的事。90年代初,市場上第一個轉基因食品出現在美國,是一種保鮮番茄,這項研究成果本是在英國研究成功的,但英國人沒敢將其商業化,美國人便成了第一個吃螃蟹的人,讓保守的英國人後悔不迭。此後,轉基因食品一發不可收。據統計,美國食品和藥物管理局確定的轉基因品種已有43種。
如常見的農作物轉入Bt(蘇雲金芽孢桿菌)基因和Ht基因。Bt基因編碼的是蘇雲金芽胞桿菌分泌的一種對鱗翅目鞘翅目昆蟲(比如小菜蛾)有毒的蛋白質,攜帶有Bt基因的農作物在生長時亦能自己產生這種毒性蛋白,因此不需要使用農藥,靠農作物自身殺蟲。這種毒蛋白只對蟲子有效,尚未證據顯示其對人類或其他哺乳動物有致毒致敏作用;Ht基因又叫抗除草劑基因,它指導的蛋白質能夠在植物體內分解除草劑物質,使植物獲得抵抗高濃度除草劑的能力。因此在田間噴洒除草劑之後,雜草會因為對除草劑的抵抗力不足而被殺死,而農作物得以正常存活。相對於非轉基因農作物使用機械來除草,種植轉Ht基因的農作物更加經濟。
發展前景
自1996年首例轉基因農作物產業化應用以來,全球轉基因技術研究與產業應用快速發展。發達國家紛紛把發展轉基因技術作為搶佔未來科技制高點和增強農業國際競爭力的戰略重點,發展中國家也積極跟進,並呈現以下發展態勢:
一是品種培育速度加快。隨著生命科學、基因組學、信息學等學科的發展,轉基因技術研究日新月異,研究手段、裝備水平不斷提高,基因克隆技術突飛猛進,一些新基因、新性狀和新產品不斷湧現。品種培育呈代際特徵,全球轉基因生物新品種已從抗蟲和抗除草劑等第一代產品,向改善營養品質和提高產量的第二代產品,以及工業、醫藥和生物反應器等第三代產品轉變,多基因聚合的複合性狀正成為轉基因技術研究與應用的重點。
二是產業化應用規模迅速擴大。截至2009年底,全球已有25個國家批准了24種轉基因作物的商業化應用。以轉基因大豆、棉花、玉米、油菜為代表的轉基因作物種植面積,由1996年的2550萬畝發展到2009年的20億畝,14年間增長了79倍。
美國仍然是最大的種植國,2009年種植面積9.6億畝;其次是巴西,3.21億畝;阿根廷,3.195億畝;印度,1.26億畝;加拿大,1.23億畝;中國,5550萬畝;巴拉圭,3300萬畝;南非,3150萬畝。值得一提的是,2000年以來,美國先後批准了6個抗除草劑和藥用轉基因水稻、伊朗批准了1個轉基因抗蟲水稻商業化種植;加拿大、墨西哥、澳大利亞、哥倫比亞4國批准了轉基因水稻進口,允許食用。
三是生態和經濟效益十分顯著。1996至2007年,全球轉基因作物的累計收益高達440億美元,累計減少殺蟲劑使用35.9萬噸。2008年,全球轉基因產品市場價值達到75億美元。
生化超限戰
2009年11月27日,農業部批准了「華恢1號」、「Bt汕優63」兩種轉基因水稻,一種BVLA430101轉基因玉米的安全證書,兩個產品分別限在湖北省和山東省生產應用。獲得兩個轉基因水稻安全證書的是華中農業大學張啟發教授及其同事。這是中國首次為轉基因水稻頒發安全證書,也是全球首次為轉基因主糧發放安全證書。但是,有關轉基因水稻商業化種植的消息引來了各種擔憂,也引起了部分網民的強烈反對。
中國於2000年8月8日簽署了《國際生物多樣性公約》下的《卡塔赫納生物安全議定書》,國務院於2005年4月27日批准了該議定書,中國正式成為締約方。議定書的目標是保證轉基因生物及其產品的安全性,盡量減少其潛在的對生物多樣性和人體健康可能造成的損害,在缺乏足夠科學依據的情況下,可對他國試圖入境的轉基因生物及產品採取嚴格的限制與禁入措施。
該公約的第23條規定,對轉基因生物要進行嚴格的風險評估、風險管理和增加決策的透明度和公眾參與,應在決策過程中徵求公眾意見,向公眾通報結果。
隨著轉基因問題日益成為熱點,越來越多的人開始關注轉基因,但是同時也出現了關於轉基因的諸多爭議。
許多文章和書籍(例如《生化超限戰:轉基因食品和疫苗的陰謀》)是反對轉基因的代表作之一。甚至有反對派把支持轉基因者說成了一種原教旨主義的歇斯底里。來自於支持和反對轉基因技術的聲音在科技原理、監控和意識形態範疇尚存在巨大紛爭。
主要影響
生態系統
減少溫室氣體排量
農業生物技術應用國際服務組織(ISAAA)發布2012轉基因作物年度發展報告
《Global Status of Commercialized Biotech/GM Crops: 2012》,指出2012年發展中國家轉基因作物種植面積的增幅首次超過發達國家,並認為發展轉基因作物可減少溫室氣體排量。
ISAAA在年度報告中分析了轉基因作物對環境的影響。報告指出,2011年全球轉基因作物的種植節約了相當於47300公斤的殺蟲劑,高產的轉基因作物節省了相當於1.09億公頃的耕地,同時其效果相當於減少了約230億公斤的溫室氣體排放量。通常,種植轉基因作物不需要大面積野外田間耕作。減少耕作能使土壤中保留更多的殘留物,從而在土壤中捕獲更多的二氧化碳,降低溫室氣體排放量。此外,較少的田間作業也必然降低燃料消耗和隨之產生的二氧化碳排放。[23]
轉基因作物因為是人工製造的品種,我們可以把這些品種,看作為自然界原來不存在的外來種。一般說來,外來物種對環境或生物多樣性,造成威脅或危險會有一段較長的時間。有時需10年的時間,或更長的時間。轉基因作物商品化種植至今最長也就是5~6年的時間,一些潛在風險在這麼短的時間內,不一定能表現出來。可是有些風險在實驗室水平上已經證實。如Mikkelsen等證實抗除草劑轉基因油菜的抗除草劑基因可以通過基因流在一次雜交、一次回交的過程已轉到其野生近緣種中(Mikkelsen et al., 1996)。
對於農田生態系統(Agro-ecosystem),同樣存在各種風險,例如:
導致殺蟲劑用量增加(抗性的選擇和轉運到可相容的其它植物中)
產生新的農田雜草(基因流和雜交)
轉基因植物自身變為雜草(插入性狀的競爭)
產生新的病毒(不同病毒基因組和轉基因作物的病毒外殼蛋白的重組)
產生新的作物害蟲
對非目標生物的傷害(食草動物的誤食)
社會質疑
2000年3月,克隆小豬「橫空出世」。隨之而來,歐美之間也為轉基因食品吃與不吃的問題爭論不休。轉基因食品有轉基因植物,如:西紅柿、土豆、玉米等,還有轉基因動物,如:魚、牛、羊等。雖然轉基因食品與普通食品在口感上沒有多大差別,但轉基因的植物、動物有明顯的優勢:優質高產、抗蟲、抗病毒、抗除草劑、改良品質、抗逆境生存等。轉基因產品對現實生活的影響仍然還有諸多疑問:到目前為止,官方沒有公開轉基因產品成份的詳細成分列表和長期的安全跟蹤研究數據。從生態學的角度來說,轉基因後的作物本身已經是蟲害等自然生物的天敵,存在破壞生態系統平衡的可能。
※特殊兒童的口腔護理及醫療
※牙結石到底該不該清?
※甲胎蛋白與肝癌是什麼關係?
TAG:醫學顧事 |