其它學科中的能量
能量的概念以及其轉移,對於解釋和預測大部分的自然現象是有用的。能量的轉移方向通常由熵來描述。而由於熱力學定律的限制,使得能量不可能在巨觀的尺度上由低處往高處流,所以在統計上,能量或是物質不會自發的移動成為較高密度的形式,或者集中到較小的空間。能量的概念廣泛的存在於各學科之中:
能量在化學方面的應用
在化學方面,物質是由原子、分子或者許多分子聚集而構築的,因此能量是物質的一個特質。因為化學反應總是伴隨著組成結構上的變化,也就牽涉到能量的吸收與放出。由於這些能量是透過光或者熱在環境及反應物間轉移,因此,生成物的能量可能會大於或小於反應物的能量,而如果最終狀態的能量低於最原始狀態,便稱為放熱,反之則為吸熱。化學反應無法自行發生,除非克服稱為活化能(E)的能量障礙;根據波茲曼分布因子e^?E/kT(也就是分子在給定的溫度 T 下,能量大於或等於活化能的機率),化學反應速率與活化能是相關的。而反應速率對溫度的關係被稱之為阿瑞尼斯方程式。另外化學反應所需要的活化能,是可以以熱能的形式存在的。...
能量在生物學方面的應用
在生物學方面,能量是任何生物生存所必需的的。在生物體中,能量驅動了下至每一個細胞上至所有多細胞有機體所表現的生命現象。並透過如碳水化合物(糖類等),酯質和蛋白質等分子,儲存在細胞中,並在呼吸氧氣進而進行呼吸作用時,自化學鍵中釋放出來。以人類來說,人類的代謝當量(人體能量轉換)顯示,一定的能量消耗是被用來維持人類的新陳代謝。假設一個人類平均每天消耗12500kJ,而以基礎代謝率80瓦。舉例來說,假設我們身體以80瓦消耗(平均)在運行,此時一個100瓦的燈泡的運作,就相當於人類80瓦的1.25倍(100÷80)。對於一個為時數秒的艱難任務,人類可以產生千瓦的功率;假設任務持續幾分鐘,一個正常人或許可以產生1000瓦特,如果在維持一小時活動的前提下,輸出功率大概下降到300左右,至於一整天的活動,150瓦已經算相當大。人體的代謝當量,幫助我們了解能量在物理和生物系統間的變換,提供我們以具體化的指標。
在每個代謝過程階段中,皆有一些化學能被轉換成熱,最終 這顯示生命體明顯低效率(以物理觀點來看)地使用得到的能量。而大部分的機械則能夠更有效地使用。一生命體將能量轉換成熱,最主要的目的是為了讓有機體的組織有序排列。根據熱力學第二定律,任何系統均有趨向混亂失序的傾向:為了要將能量(或物質)集中在一特定地方,需釋放更多的能量(如熱)到外界。以在維持自身結構的狀態下使整體的亂度滿足定律要求。(這個觀點很有啟發哦,真是漲知識)在食物鏈的的第一個環節里,大約有124.7Pg/a的碳用來進行光合作用,64.3Pg/a(52%)的碳作為綠色植物代謝用途,即是轉換回二氧化碳和熱。
能量在地球科學方面的應用
在地質學方面,大陸飄移、山脈、火山和地震等自然現象,都可以根據能量在地球內部的轉換來解釋;而風、雨、冰雹、雪、雷電、龍捲風、颶風等氣象現象,是由太陽能作用在地球大氣,所造成的能量轉換的結果。
能量在天文學方面的應用
在物理宇宙學方面,恆星、新星、超新星、類星體、伽瑪射線暴等現象,都是物質所轉換的輸出能量。所有恆星(包括太陽)都是以質能轉換為能量來源的。星際氣體因引力聚縮,產生足夠壓力後便啟動了核聚變反應,反應中總質量虧損,釋放出能量。
而太陽的能量最終有一部分傳播到地球上,驅動了從水循環到光合作用等現象,間接供給了所有參與碳循環的生命形式。
創造宇宙的大爆炸同時釋放出巨大的能量,產生第一批的物質和反物質,隨著宇宙擴張,溫度下降,容許了夸克之間,核子之間的結合,最後允許原子核捕捉遊離的電子,第一批原子於焉誕生。原本遊離的電子云於是消散,容許了最初的光傳播於宇宙中。
能量和功率的差別
功率並非和能量完全相同,功率是指能量轉換時的速率,(或者可說是功在執行時的速率)。因此一個讓水壩上的水通過渦輪機的水力發電廠,會將水的位能轉換成動能,最後再轉換成電能。在這過程中每單位時間所產生的電能便稱之為電功率。相同的總能量在更短的時間內通過會造成更大的功率。
TAG:竹籬 |