能量與相對論、量子力學
量子力學
在量子力學中我們可以定義出能量運運算元,而能量運運算元跟波函數的時間微分有關係。薛定諤方程式中能量運運算元等於粒子或是系統里的所有能量,因此可將其定義成在量子力學中測量能量的方法。薛定諤方程式可以用來形容非相對論量子系統的波函數,此方程式在局限系統中的解是不連續的,在這邊即可引入能階和量子的概念。對於振子和任何真空中的電磁波而言,薛定諤方程式的解所得到的能態與頻率有關,可由普朗克方程式E=hν(h為普朗克常數,ν為頻率)將它們作一個連結。因此,對電磁波而言這些能態稱為光的能量量子化或是光子。
相對論
當計算相對論中的動能時(一物質從靜止加速到一定速率所做的功)——需利用洛倫茲轉換而非牛頓力學,愛因斯坦由這些計算里發現一意想不到的結果,就是有一能量項即使在速率為零時也不會是零。他將該項能量命名為靜止能量——即使在靜止時,所有物質都具備的能量。能量的大小與物質質量成正比:
其中:m為質量,c為真空時的光速,E為靜止能量,
例如,研究電子與正子的湮滅時,兩個單一粒子的靜止質量被銷毀了,產生沒有質量的慣性光子,但在慣性系統中仍具有兩個粒子的質量,仍符合能量守恆(由於所有的能量與質量有關)。相反地,兩個(或更多)的光子消滅會成對的產生電性相反的粒子。然而,在這些反應中系統的質量和能量總和並不改變。
在廣義相對論中,應力-能量張量(為描述能量與動量在時空中的密度與通量,其為牛頓物理中應力張量的推廣)為重力場的源,有點類似牛頓重力理論中質量是重力場源一般。
我們常常可以聽到能量「相等於」質量。更準確地說,每個能量其實都擁有慣性和萬有引力的等價項,因為質量也是一種能量形式,所以質量也與慣性和萬有引力有關。
從宏觀角度看:能量是憑藉質量而穩定存在的;從微觀而言:任何可觀測量的熵總是在不斷增加。
TAG:竹籬 |