ICML2018論文公布!一文了解機器學習最新熱議論文和研究熱點
新智元推薦
來源:專知
編輯:克雷格
【新智元導讀】ICML 2018上周公布了會議接受論文,各家組織機構和研究大牛們在Twitter上紛紛報喜,放出接受論文,恭喜!有Google Brain、DeepMind、Facebook、微軟和各大高校等。我們整理了Twitter上的關注度比較熱的一些論文,供大家了解,最新關於機器學習的一些熱門研究方向!
Differentiable Dynamic Programming for Structured Prediction and Attention
最熱的就是這篇第一作者Arthur Mensch?,來自法國Inria Parietal,也是scikit-learn 作者之一,論文關於結構性預測與注意力中的可微分動態編程。
作者重點指出:Sparsity and backprop in CRF-like inference layers using max-smoothing, application in text + time series (NER, NMT, DTW)。
Twitter上截止到現在 600贊。
論文網址:
http://www.zhuanzhi.ai/document/34c4176a60e002b524b56b5114db0e78
這位評價甚高!oneofthemostinnovativedeeplearningpapers!
歡迎大家閱讀!
2. WaveRNN、Parralel WaveNet
來自DeepMind的兩篇論文關於語音合成!
WaveRNN: http://arxiv.org/abs/1802.08435
Parallel WaveNet: http://arxiv.org/abs/1711.10433
WaveNet早已名聲卓著,比原來快千倍,語音更自然,已經用在Google自家產品Google Assistant 里~
3. GAN性能表現分析
來自谷歌大腦GoodFellow團隊,Is Generator Conditioning Causally Related to GAN Performance? find: 1. Spectrum of G"s in/out Jacobian predicts Inception Score. 2. Intervening to change spectrum affects scores a lot
論文鏈接:https://t.co/cXQDEE2Uee
4.優化方法 Adam分析
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
論文地址:https://arxiv.org/abs/1705.07774
5. 圖像轉換器
論文地址:https://arxiv.org/abs/1802.05751
其他論文列表:
論文地址:
Bayesian Quadrature for Multiple Related Integrals
https://arxiv.org/abs/1801.04153
Stein Points
https://arxiv.org/abs/1803.10161
Active Learning with Logged Data
https://arxiv.org/abs/1802.09069
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
https://arxiv.org/abs/1706.03922
Hierarchical Imitation and Reinforcement Learning
https://arxiv.org/abs/1803.00590
Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model
https://arxiv.org/abs/1802.04551
Detecting and Correcting for Label Shift with Black Box Predictors
https://arxiv.org/abs/1802.03916
Yes, but Did It Work?: Evaluating Variational Inference
https://arxiv.org/abs/1802.02538
MAGAN: Aligning Biological Manifolds
https://arxiv.org/abs/1803.00385
Does Distributionally Robust Supervised Learning Give Robust Classifiers?
https://arxiv.org/abs/1611.02041
Knowledge Transfer with Jacobian Matching
https://arxiv.org/abs/1803.00443
Kronecker Recurrent Units
https://arxiv.org/abs/1705.10142
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
https://arxiv.org/abs/1712.09376
The Manifold Assumption and Defenses Against Adversarial Perturbations
https://arxiv.org/abs/1711.08001
Overcoming catastrophic forgetting with hard attention to the task
https://arxiv.org/abs/1801.01423
On the Opportunities and Pitfalls of Nesting Monte Carlo Estimators
https://arxiv.org/abs/1709.06181
Tighter Variational Bounds are Not Necessarily Better
https://arxiv.org/abs/1802.04537
LaVAN: Localized and Visible Adversarial Noise
https://arxiv.org/abs/1801.02608
Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples
https://arxiv.org/abs/1711.09576
Geometry Score: A Method For Comparing Generative Adversarial Networks
https://arxiv.org/abs/1802.02664
(本文授權轉載自專知,ID:Quan_Zhuanzhi)
※震撼!英偉達用深度學習做圖像修復,毫無ps痕迹
※蘋果確認自研5G技術,欲擺脫對高通英特爾依賴
TAG:新智元 |