當前位置:
首頁 > 最新 > 常見的數據挖據之路徑分析

常見的數據挖據之路徑分析

路徑分析是常用的數據挖據方法之一, 是一種找尋頻繁訪問路徑的方法,它通過對Web伺服器的日誌文件中客戶訪問站點訪問次數的分析,挖掘出頻繁訪問路徑。

路徑分析常見思路與方法

1.Sunburst Partition可視化分析探索

通過解析布點獲得的用戶行為路徑數據,我們可以用最簡單與直接的方式將每個用戶的事件路徑點擊流數據進行統計,並用數據可視化方法將其直觀地呈現出來。

2.基於關聯分析的序列路徑挖掘方法

提到關聯規則分析,必然免不了數據挖掘中的經典案例「啤酒與尿布」。暫且不論「啤酒與尿布」是不是Teradata的一位經理胡編亂造吹噓出來的「神話故事」,這個案例在一定程度上讓人們理解與懂得了購物籃分析(關聯分析)的流程以及背後所帶來的業務價值。

將超市的每個客戶一次購買的所有商品看成一個購物籃,運用關聯規則演算法分析這些存儲在資料庫中的購買行為數據,即購物籃分析,發現10%的顧客同事購買了尿布與啤酒,且在所有購買了尿布的顧客中,70%的人同時購買了啤酒。於是超市決定將啤酒與尿布擺放在一起,結果明顯提升了銷售額。

我們在此不妨將每個用戶每次使用App時操作所有事件點看成「購物籃」中的「一系列商品」,與上面提到的購物籃不同的是,這裡的所有事件點擊行為都是存在嚴格的前後事件順序的。我們可以通過改進關聯規則中的AprIOri或FP-Growth演算法,使其可以挖掘存在嚴格先後順序的頻繁用戶行為路徑,不失為一種重要的用戶路徑分析思路。我們可以仔細考量發掘出來的規則序列路徑所體現的產品業務邏輯,也可以比較分析不同用戶群體之間的規則序列路徑。

3.社會網路分析(或鏈接分析)

早期的搜索引擎主要基於檢索網頁內容與用戶查詢的相似性或者通過查找搜索引擎中被索引過的頁面為用戶查找相關的網頁,隨著90年代中後期互聯網網頁數量的爆炸式增長,早期的策略不再有效,無法對大量的相似網頁給出合理的排序搜索結果。

現今的搜索引擎巨頭如Google、百度都採用了基於鏈接分析的搜索引擎演算法來作為這個問題的解決方法之一。網頁與網頁之間通過超鏈接結合在一起,如同微博上的社交網路通過關注行為連接起來,社交網路中有影響力很大的知名權威大V們,互聯網上也存在著重要性或權威性很高的網頁。將權威性較高的網頁提供到搜索引擎結果的前面,使得搜索的效果更佳。

————————————————————————————

SSL證書是HTTP明文協議升級HTTPS加密協議的重要渠道,是網路安全傳輸的加密通道。關於更多SSL證書的資訊,請關注數安時代(GDCA)。GDCA致力於網路信息安全,已通過WebTrust 的國際認證,是全球可信任的證書籤發機構。GDCA專業技術團隊將根據用戶具體情況為其提供最優的產品選擇建議,並針對不同的應用或伺服器要求提供專業對應的HTTPS解決方案。

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 數安時代GDCA 的精彩文章:

加密強度:128位SSL與256位SSL

TAG:數安時代GDCA |