當前位置:
首頁 > 科技 > 現在,機器也能取代人類做「高級白領」

現在,機器也能取代人類做「高級白領」

印度電商網站Myntra上最暢銷的的一款T恤結合了橄欖綠、藍色和黃色三種色塊。然而,這件T恤的設計師不是人類,而是一個計算機演算法——或者說應該是兩個演算法才對。

第一個演算法會隨機生成圖片,它會嘗試將這些圖片看作是衣服。第二個演算法就必須將這些圖片與Myntra庫存里的衣服進行區分。在很長一段時間內,演算法的表現都還不錯。第一個演算法能夠更好地生成類似衣服的圖片,而第二個演算法則可以更好地確認它們是否與現有的產品相似——但並非一模一樣。

這樣的「你來我往」很好地詮釋了人工智慧的工作。公司的首席執行官Ananth Narayanan表示,設計出來的衣服「銷售增長速率達到了100%」。「這確實是有效果的。」他說道。

服裝設計不過只是演算法變革時尚和零售行業的一處領先優勢罷了。公司如今已經很頻繁地在使用人工智慧技術來決定在庫存中添加哪些衣服並且推薦給消費者。

時尚行業在美國很早就削減了藍領工人的崗位,如今它也成為了人工智慧影響白領工作的一個典例。對於需要發現模式的工作來說,人工智慧能夠起到很大幫助,比如說挑選庫存或是確診癌症。

「在未來這些年,機器能夠實現自動化或增強的任務組合範圍會越來越大。」麻省理工學院的經濟學家Erik Brynjolfsson以及卡耐基梅隆大學的計算機科學家Tom Mitchell去年在一篇期刊中如是寫道。他們認為,大多數受影響的工作會實現部分自動化,而不是整體被取代。

時尚行業詮釋了機器是如何侵入那些以人類創造力而聞名的工作,而不是那些需要憑藉實踐經驗進行判斷的崗位。會因此受到直接影響的人便是採購員和商品規劃師。他們主要負責決定哪種裙子、上裝或是褲子能夠讓商店庫存銷售一空。

採購員的核心工作就是要利用「千錘百鍊」的理解力感知時尚趨勢,然後預測消費者的需求。「如果你上個月賣出了500雙松糕鞋,那麼下個月說不定你可以賣出1000雙。」在線零售商Kristina Shiroka說道,她曾為Outnet擔任採購員多年。「但是人們到時候也許對此就不再感興趣了,所以你需要減少採購量。」

商品規劃師會利用採購員的信息來決定服飾組合——比如說多少雙涼鞋、高跟鞋以及平底鞋——能夠幫助公司達到銷售目標。

行業內採用高性能演算法的公司雖然不多,但是數量在日益增加。在這些公司里,通常是由機器——而不是採購員的直覺——來預測消費者的需求。

就拿在線時尚電商Stitch Fix來說吧。它會為顧客寄送一盒衣服,顧客可以選擇保留或是返還衣物。Stitch Fix會留有顧客詳細的資料信息,之後會針對顧客的偏好來寄送衣物。

Stitch Fix非常依賴演算法來決定採購內容——事實上,沒有演算法的話,它的業務也許就沒法展開。這些演算法會預測未來幾個月時間裡,在一個給定的情況或「狀態」下會有多少客戶以及在各種情形下人們傾向於買多少衣服。演算法還知道不同資料背景的消費者傾向於喜歡哪種類型的衣服——比如說一個生活在德克薩斯州、有孩子但身材嬌小的護士。

印度在線零售商Myntra會用演算法來為採購員提供信息。演算法會根據具有類似屬性——袖子、顏色或織物——衣服過往的銷售情況來計算一件衣服的暢銷可能性。

這一切都讓採購員和商品規劃師的未來蒙上了陰翳。原先這些高地位的工作者年收入能超過10萬美元。

而在相對更為傳統的零售商里,每一種衣服類型(名牌、現代或是休閑)或是服裝類別(裙子或上衣)都會分派一隊採購員以及支持員工。一些零售商還會針對針織以及梭織上衣安排不同的團隊。同樣,針對不同服裝類別安排商品規劃師,這也需要僱傭不少人。

採購員表示這種專門化能夠幫助他們通過直覺感知時尚和顏色趨勢。「如果你非常沉浸其中,那麼你大概就有感覺了。」一直在Charlotte Russe以及ModCloth等零售商工作的採購員Helena Levin說道。

Lebin還提到了在2010年左右的暢銷薄荷綠連衣裙。「突然有一天,它就是不火了。」她說道,「人們對它的喜歡到此為止。『所有薄荷綠的東西,都走開。』之後,它就過時了。你能夠感覺到這一點。」

但是擅長利用演算法和大數據的零售商更希望能少僱傭一些採購員,然後為不同服裝類別單獨分配一位即可。這也許是因為他們不太相信直覺。

在線女裝租賃以及零售服務Le Tote每年營業額在數億美元,所有品牌的服裝——連衣裙、上裝、褲子以及夾克——都只由一個六人組成的團隊負責採購。

創始人Brett Northart表示公司的演算法會基於有多少用戶將商品放在了在線購物清單里以及其他類似網路評價、近期購買量等因素,確認要購買哪些衣服。

類似於Stitch Fix的時尚男裝服務Bombfell僅僅依靠一個名叫Nathan Cates的員工來採購所有上裝和配飾。

公司開發的演算法工具以及大資料庫可以幫助Cates。他也表示相比傳統零售商那裡的採購員,他可以更加準確地預測服裝趨勢。

「我們很清楚自己的客戶是誰。」他說道,「我們很清楚他們生活的區域、工作以及衣服尺碼。」

至今為止,他的工作中只有一部分是需要人為完成的。Cates很喜歡在購買衣服之前觸摸織物,並且總是在一開始就自己試穿一下。

「如果這是淺色的衣服,那麼消費者會露點嗎?」他解釋道。

自動化還存在一些限制因素。與供應商的談判通常還是需要人為參與。即便演算法可以幫助採購員更快、更準確地作出決定,它們也無法應付與供應商的關係。

?


喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 科技無處不在 的精彩文章:

單反主力廠商佳能和尼康將推全幅無反相機
ThinkPad發布新款移動工作站P52 配備128GB內存+6TB硬碟

TAG:科技無處不在 |