當前位置:
首頁 > 科技 > 流氓數學家,暴力與美學的證明

流氓數學家,暴力與美學的證明

1.最經典的「無字證明」

1989 年的《美國數學月刊》(American Mathematical Monthly)上有一個貌似非常困難的數學問題:下圖是由一個個小三角形組成的正六邊形棋盤,現在請你用右邊的三種(僅朝向不同的)菱形把整個棋盤全部擺滿(圖中只擺了其中一部分),證明當你擺滿整個棋盤後,你所使用的每種菱形數量一定相同。

文章末尾提供了一個非常帥的「證明」。把每種菱形塗上一種顏色,整個圖形瞬間有了立體感,看上去就成了一個個立方體在牆角堆疊起來的樣子。三種菱形分別是從左側、右側、上方觀察整個立體圖形能夠看到的面,它們的數目顯然應該相等。

嚴格地說,這個本來不算數學證明的。但它把一個純組合數學問題和立體空間圖形結合在了一起,實在讓人拍案叫絕。因此,這個問題及其鬼斧神工般的「證明」流傳甚廣,深受數學家們的喜愛。

《最迷人的數學趣題——一位數學名家精彩的趣題珍集》(Mathematical Puzzles: A Connoisseur"s Collection)一書的封皮上就赫然印著這個經典圖形。在數學中,類似的流氓證明數不勝數,不過上面這個可能算是最經典的了。

2.旋輪線的面積

車輪在地上旋轉一圈的過程中,車輪圓周上的某一點划過的曲線就叫做「旋輪線」。在數學和物理中,旋輪線都有著非常重要而優美的性質。比如說,一段旋輪線下方的面積恰好是這個圓的面積的三倍。這個結論最早是由伽利略(Galileo Galilei,1564-1642)發現的。不過,在沒有微積分的時代,計算曲線下方的面積幾乎是一件不可能完成的任務。伽利略是如何求出旋輪線下方的面積的呢?

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 大數據實驗室 的精彩文章:

從10億光年到0.1飛米的奇妙世界,只能用震撼來形容!
名師薈萃高手雲集,期權十倍訓練營來啦!

TAG:大數據實驗室 |