Elasticsearch的DSL操作命令大全
文章目錄
奇葩需求:
es內置的分詞器:
修改mapping:
重構索引:
奇葩需求:
1.
按照論壇名稱,對論壇評論總量,1-5月按月聚合 相對應欄位為cmtCnt
按照論壇名稱,對論壇發帖點贊量,1-5月按月聚合 相對應欄位為adtCnt
GET xiao-2018-4-1,xiao-2018-6-12,xiao-2018-3-1/Socials/_search
{
"size" : 0,
"query" : {
"constant_score" : {
"filter" : {
"bool" : {
"must" : [
{
"term" : {
"sourceType" : "FORUM"
}
},
{
"range": {
"timeDay": {
"gte": "2018-01-01",
"lte": "2018-05-31"
}
}
}
]
}
}
}
},
"aggs" : {
"all_interests" : {
"terms" : {
"size" : 100000,
"field" : "website.keyword"
},
"aggs": {
"month_num": {
"date_histogram": {
"field": "timeDay",
"interval": "month",
"format": "yyyy-MM"
},
"aggs": {
"single_sum": {
"sum" : { "field" : "cmtCnt" }
}
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
結果:
{
"took": 9141,
"timed_out": false,
"_shards": {
"total": 350,
"successful": 350,
"failed": 0
},
"hits": {
"total": 735705,
"max_score": 0,
"hits": []
},
"aggregations": {
"all_interests": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "論壇",
"doc_count": 661238,
"month_num": {
"buckets": [
{
"key_as_string": "2018-01",
"key": 1514764800000,
"doc_count": 3,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-02",
"key": 1517443200000,
"doc_count": 0,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-03",
"key": 1519862400000,
"doc_count": 1403,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-04",
"key": 1522540800000,
"doc_count": 125895,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-05",
"key": 1525132800000,
"doc_count": 533937,
"single_sum": {
"value": 0
}
}
]
}
},
{
"key": "百度貼吧",
"doc_count": 21275,
"month_num": {
"buckets": [
{
"key_as_string": "2018-02",
"key": 1517443200000,
"doc_count": 290,
"single_sum": {
"value": 406
}
},
{
"key_as_string": "2018-03",
"key": 1519862400000,
"doc_count": 20472,
"single_sum": {
"value": 19174
}
},
{
"key_as_string": "2018-04",
"key": 1522540800000,
"doc_count": 483,
"single_sum": {
"value": 1740
}
},
{
"key_as_string": "2018-05",
"key": 1525132800000,
"doc_count": 30,
"single_sum": {
"value": 45
}
}
]
}
},
{
"key": "股吧",
"doc_count": 6395,
"month_num": {
"buckets": [
{
"key_as_string": "2018-02",
"key": 1517443200000,
"doc_count": 10,
"single_sum": {
"value": 26
}
},
{
"key_as_string": "2018-03",
"key": 1519862400000,
"doc_count": 6383,
"single_sum": {
"value": 24965
}
},
{
"key_as_string": "2018-04",
"key": 1522540800000,
"doc_count": 1,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-05",
"key": 1525132800000,
"doc_count": 1,
"single_sum": {
"value": 0
}
}
]
}
},
{
"key": "好大夫在線",
"doc_count": 2933,
"month_num": {
"buckets": [
{
"key_as_string": "2018-02",
"key": 1517443200000,
"doc_count": 5,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-03",
"key": 1519862400000,
"doc_count": 2927,
"single_sum": {
"value": 0
}
},
{
"key_as_string": "2018-04",
"key": 1522540800000,
"doc_count": 1,
"single_sum": {
"value": 0
}
}
]
}
}
。。。。。太多省略
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
2.
按照論壇名稱,對論壇正面情感總量(非負數),1-5月按月聚合 相對應欄位為sentimentOrient
GET xiao-2018-4-1,xiao-2018-6-12,xiao-2018-3-1/Socials/_search
{
"size" : 0,
"query" : {
"constant_score" : {
"filter" : {
"bool" : {
"must" : [
{
"term" : {
"sourceType" : "FORUM"
}
},
{
"range": {
"timeDay": {
"gte": "2018-01-01",
"lte": "2018-05-31"
}
}
}
],
"must_not" : [
{ "term" : { "sentimentOrient" : -1} },
{ "term" : { "sentimentOrient" : 0 } }
]
}
}
}
},
"aggs" : {
"all_interests" : {
"terms" : {
"size" : 100000,
"field" : "website.keyword"
},
"aggs": {
"month_num": {
"date_histogram": {
"field": "timeDay",
"interval": "month",
"format": "yyyy-MM"
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
疑問:本來一開始想按官網https://elasticsearch.cn/book/elasticsearch_definitive_guide_2.x/_extended_example.html上用extended_bounds來限制時間範圍死活不好使我也是奇了怪了,最後只能轉變思路在查詢的時候做手腳了。
3.
需要監測的關鍵詞:零跑,零跑汽車,零跑S01
需要過濾關鍵詞:零跑腿,專家門診
社交和新聞根據url欄位去重後6月2號到7月2號的總數值
GET xiao-2018-6-12,xiao-2018-6-19,xiao-2018-6-26,xiao-2018-6-5/Socials/_search
{
"size" : 0,
"query" : {
"constant_score" : {
"filter" : {
"bool" : {
"must" : [
{
"range": {
"timeDay": {
"gte": "2018-06-02",
"lte": "2018-07-02"
}
}
},
{
"query_string":{
"default_field":"textZh",
"query":"零跑 OR 零跑汽車 OR 零跑S01 NOT 零跑腿 NOT 專家門診"
或者
"query" : "( ( ""零跑"" ) OR ( ""零跑汽車"" ) OR ( ""零跑S01"" ) NOT ( ""零跑腿"" ) NOT ( ""專家門診"" ) )"
}
}
]
}
}
}
},
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "url"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
註:上面這個查詢結果不對,還是有問題
原因:這個索引mapping里textZh欄位的設置如下
"textZh": {
"type": "text",
"store": true,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
},
"analyzer": "ik_smart"
}
1
2
3
4
5
6
7
8
9
10
11
導致你輸入「零跑」會被分詞為「零」和「跑」,所以搜索的結果並不是你想要的
解決:
社交(_type是「Socials」的為社交,_type是「News」的為新聞):
GET xiao-2018-6-12,xiao-2018-6-19,xiao-2018-6-26,xiao-2018-6-5/Socials/_search
{
"size" : 0,
"query" : {
"constant_score" : {
"filter" : {
"bool": {
"must": {
"range": {
"timeStr": {
"gte": "2018-06-02 00:00:00",
"lte": "2018-07-03 00:00:00"
}
}
},
"should": [
{
"match_phrase": {
"textZh" : {
"query" : "零跑"
}
}
},
{
"match_phrase": {
"textZh" : {
"query" : "零跑汽車"
}
}
},
{
"match_phrase": {
"textZh" : {
"query" : "零跑S01"
}
}
}
],
"must_not": {
"bool": {
"should": [
{
"match_phrase": {
"textZh" : "零跑腿"
}
},
{
"match_phrase": {
"textZh" : {
"query" : "專家門診"
}
}
}
]
}
}
}
}
}
},
"aggs" : {
"distinct_colors" : {
"cardinality" : {
"field" : "url"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
4.25號到28號指定時間段的微博號總和(按發文量倒排)
GET xiaoqiang-2018-10-29/Socials/_search
{
"size": 0,
"query" : {
"constant_score" : {
"filter" : {
"bool" : {
"must" : [
{
"range": {
"timeHour": {
"gte": "2018-10-25 21",
"lte": "2018-10-28 21",
"format": "yyyy-MM-dd HH"
}
}
},
{
"term" : {
"sourceType": "weibo"
}
}
]
}
}
}
},
"aggs" : {
"all_interests" : {
"terms" : {
"script" : "String he=new SimpleDateFormat("HH").format(new Date(doc["timeHour"].value)); if(he.equals("01")){return he;}else{return null;}",
"order" : { "_term" : "desc" }
},
"aggs" : {
"per_count" : {
"terms" : {
"script" : "doc["url"].value.substring(17,27)"
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
結果:
{
"took": 4182,
"timed_out": false,
"_shards": {
"total": 10,
"successful": 10,
"failed": 0
},
"hits": {
"total": 2997411,
"max_score": 0,
"hits": []
},
"aggregations": {
"all_interests": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "01",
"doc_count": 154272,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 154116,
"buckets": [
{
"key": "5670137181",
"doc_count": 20
},
{
"key": "5408336201",
"doc_count": 16
},
{
"key": "1084088733",
"doc_count": 15
},
{
"key": "1283869875",
"doc_count": 15
},
{
"key": "1322676944",
"doc_count": 15
},
{
"key": "1668841355",
"doc_count": 15
},
{
"key": "1681901143",
"doc_count": 15
},
{
"key": "1704588860",
"doc_count": 15
},
{
"key": "1819301715",
"doc_count": 15
},
{
"key": "1823510107",
"doc_count": 15
}
]
}
}
]
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
5.近n天每天各個時段的微博號(按發文量倒排)
GET xiaoqiang-2018-10-29/Socials/_search
{
"size": 0,
"query" : {
"constant_score" : {
"filter" : {
"bool" : {
"must" : [
{
"range": {
"timeHour": {
"gte": "2018-10-26 21",
"lte": "2018-10-28 21",
"format": "yyyy-MM-dd HH"
}
}
},
{
"term" : {
"sourceType": "weibo"
}
}
]
}
}
}
},
"aggs" : {
"all_interests" : {
"terms" : {
"script" : "new SimpleDateFormat("HH").format(new Date(doc["timeHour"].value))",
"order" : { "_term" : "desc" }
},
"aggs": {
"month_num": {
"date_histogram": {
"field": "timeDay",
"interval": "day",
"format": "yyyy-MM-dd"
},
"aggs" : {
"per_count" : {
"terms" : {
"size" : 1,
"script" : "doc["url"].value.substring(17,27)"
}
}
}
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
結果:
{
"took": 15584,
"timed_out": false,
"_shards": {
"total": 10,
"successful": 10,
"failed": 0
},
"hits": {
"total": 2143757,
"max_score": 0,
"hits": []
},
"aggregations": {
"all_interests": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 1356451,
"buckets": [
{
"key": "23",
"doc_count": 93821,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 37782,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 37767,
"buckets": [
{
"key": "1057449614",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 56039,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 56024,
"buckets": [
{
"key": "1218291087",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "22",
"doc_count": 92328,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 37043,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 37028,
"buckets": [
{
"key": "1306672440",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 55285,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 55270,
"buckets": [
{
"key": "1221062225",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "21",
"doc_count": 92859,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 36797,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 36782,
"buckets": [
{
"key": "3799113457",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 56062,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 56047,
"buckets": [
{
"key": "1360660712",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "20",
"doc_count": 95391,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 38552,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 38537,
"buckets": [
{
"key": "2722601793",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 56839,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 56824,
"buckets": [
{
"key": "1799231193",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "19",
"doc_count": 94108,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 37687,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 37672,
"buckets": [
{
"key": "1750745673",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 56421,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 56406,
"buckets": [
{
"key": "1814872401",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "18",
"doc_count": 95298,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 37882,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 37867,
"buckets": [
{
"key": "3933789681",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 57416,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 57401,
"buckets": [
{
"key": "1508661252",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "17",
"doc_count": 87719,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 34590,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 34575,
"buckets": [
{
"key": "2038738841",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 53129,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 53114,
"buckets": [
{
"key": "2237799475",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "16",
"doc_count": 64030,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 27736,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 27721,
"buckets": [
{
"key": "1911197885",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 36294,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 36279,
"buckets": [
{
"key": "1984810814",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "15",
"doc_count": 44697,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 19721,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 19706,
"buckets": [
{
"key": "1564695515",
"doc_count": 15
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 24976,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 24961,
"buckets": [
{
"key": "1772563447",
"doc_count": 15
}
]
}
}
]
}
},
{
"key": "14",
"doc_count": 27055,
"month_num": {
"buckets": [
{
"key_as_string": "2018-10-27",
"key": 1540598400000,
"doc_count": 11754,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 11740,
"buckets": [
{
"key": "5054956136",
"doc_count": 14
}
]
}
},
{
"key_as_string": "2018-10-28",
"key": 1540684800000,
"doc_count": 15301,
"per_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 15286,
"buckets": [
{
"key": "1690639232",
"doc_count": 15
}
]
}
}
]
}
}
]
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
獲取多層聚合的數據api:
private boolean handleresaggWeibo(SearchResponse response,JSONObject result,JSONObject message) {
boolean flag = true;
JSONObject json = null;
List<String> jsons = null;
String timeinterval = message.getString("timeinterval");
//獲取聚合參數
Map<String, Aggregation> aggMap = response.getAggregations().asMap();
StringTerms gradeTerms = (StringTerms) aggMap.get("timeinterval");
Iterator<Bucket> gradeBucketIt = gradeTerms.getBuckets().iterator();
while(gradeBucketIt.hasNext()) {
jsons = new ArrayList<>();
Bucket gradeBucket = gradeBucketIt.next();
System.out.println(gradeBucket.getKey() + "時間段共有 " + gradeBucket.getDocCount() +"個文檔。");
StringTerms classTerms = (StringTerms) gradeBucket.getAggregations().asMap().get("weiboIds");
Iterator<Bucket> classBucketIt = classTerms.getBuckets().iterator();
int i = 0;
while(classBucketIt.hasNext()) {
Bucket classBucket = classBucketIt.next();
String pattern = "^\d+$";
String weiboid = classBucket.getKeyAsString();
Pattern p = Pattern.compile(pattern);
Matcher matcher = p.matcher(weiboid);
if (matcher.matches()) {
jsons.add(i, weiboid);
i++;
}
}
result.put(timeinterval, jsons);
result.put("flag", "1");
result.put("status", "返回列表成功");
flag = true;
}
return flag;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
es內置的分詞器:
standard analyzer
simple analyzer
whitespace analyzer
language analyzer(特定的語言的分詞器)
例句:Set the shape to semi-transparent by calling set_trans(5)
不同分詞器的分詞結果:
standard analyzer:set, the, shape, to, semi, transparent, by, calling, set_trans, 5(默認的是standard)
simple analyzer:set, the, shape, to, semi, transparent, by, calling, set, trans
whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
language analyzer(特定的語言的分詞器,比如說,english,英語分詞器):set, shape, semi, transpar, call, set_tran, 5
分詞器測試:
GET /_analyze
{
"analyzer": "standard",
"text":"I love you"
}
1
2
3
4
5
結果:
{
"tokens": [
{
"token": "i",
"start_offset": 0,
"end_offset": 1,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "love",
"start_offset": 2,
"end_offset": 6,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "you",
"start_offset": 7,
"end_offset": 10,
"type": "<ALPHANUM>",
"position": 2
}
]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
修改mapping:
1.創建索引:
PUT hui
1
2.刪除索引:
DELETE hui
1
3.mapping增加欄位
(Elasticsearch的mapping一旦創建,只能增加欄位,而不能修改已經mapping的欄位)
POST hui/News/_mapping
{
"News": {
"properties": {
"hui":{
"type": "text",
"store": true
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
4.修改:
POST hui/News/_mapping
{
"News": {
"properties": {
"hui":{
"type": "integer"
}
}
}
}
1
2
3
4
5
6
7
8
9
10
報錯:
{
"error": {
"root_cause": [
{
"type": "illegal_argument_exception",
"reason": "mapper [hui] of different type, current_type [text], merged_type [integer]"
}
],
"type": "illegal_argument_exception",
"reason": "mapper [hui] of different type, current_type [text], merged_type [integer]"
},
"status": 400
}
1
2
3
4
5
6
7
8
9
10
11
12
13
原因:
如果一個欄位的類型修改以後,那麼該欄位的所有數據都需要重新索引。Elasticsearch底層使用的是lucene庫,欄位類型修改以後索引和搜索要涉及分詞方式等操作,不允許修改類型在是符合lucene機制的
重構索引:
1.重建索引hui插入數據並設置別名:
PUT hui
POST hui/News/_mapping
{
"News": {
"properties": {
"hui":{
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
POST hui/News/1
{
"hui" : "hehe"
}
POST hui/_alias/xiao
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2.創建索引qiang並插入數據:
PUT qiang
POST qiang/News/_mapping
{
"News": {
"properties": {
"hui":{
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
},
"store": true
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
3.開始執行重構索引命令:
POST _reindex
{
"source": {
"index": "hui"
},
"dest": {
"index": "qiang",
"version_type": "internal"
}
}
1
2
3
4
5
6
7
8
9
10
註:數據量大的時候會如下顯示連接超時,但是卻不影響功能實現。我重新導入了十九萬的數據大約用了十多分鐘
{
"statusCode": 504,
"error": "Gateway Timeout",
"message": "Client request timeout"
}
1
2
3
4
5
4.使用Task API查詢進度:
GET _tasks?detailed=true&actions=*reindex
{
"nodes": {
"yFpET0TETpuWGCxxyodXmg": {
"name": "yFpET0T",
"transport_address": "192.168.0.100:9300",
"host": "192.168.0.100",
"ip": "192.168.0.100:9300",
"roles": [
"master",
"data",
"ingest"
],
"attributes": {
"ml.max_open_jobs": "10",
"ml.enabled": "true"
},
"tasks": {
"yFpET0TETpuWGCxxyodXmg:6319552": {
"node": "yFpET0TETpuWGCxxyodXmg",
"id": 6319552,
"type": "transport",
"action": "indices:data/write/reindex",
"status": {
"total": 194111,
"updated": 0,
"created": 50000,
"deleted": 0,
"batches": 51,
"version_conflicts": 0,
"noops": 0,
"retries": {
"bulk": 0,
"search": 0
},
"throttled_millis": 0,
"requests_per_second": -1,
"throttled_until_millis": 0
},
"description": "reindex from [mei_toutiao] to [mei_toutiao_v2]",
"start_time_in_millis": 1532338516013,
"running_time_in_nanos": 176981696219,
"cancellable": true
}
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
5.如果複製完成則顯示:
{
"nodes": {}
}
1
2
3
6.別名轉換:
POST /_aliases
{
"actions": [
{ "remove": {
"alias": "xiao",
"index": "hui"
}},
{ "add": {
"alias": "xiao",
"index": "qiang"
}}
]
}
打開今日頭條,查看更多精彩圖片※數據增量同步 最佳實踐 數據集成(同步)用戶指南
※獲取一個字元串值在指定字元串第n次出現的位置
TAG:程序員小新人學習 |