拉馬努金的那些壯觀的公式,都是怎麼發現的?
原標題:拉馬努金的那些壯觀的公式,都是怎麼發現的?
編輯:Gemini
來源:今日頭條
轉自:演算法與數學之美
如涉版權請加編輯微信iwish89聯繫
哈代給拉馬努金的定位是
拉馬努金在印度之時,數學一直很好,而激發拉馬努金的研究天賦的是,卡爾的《純粹與應用數學基本結果概要》一書,這本書系統闡述了6165條定理,以比較科學的形式羅列著,並附上了證明(但是這部分比 較無聊)。
該書內容對三角學、微積分、解析幾何都有涉獵,不過明顯作者最偏愛積分、級數,也是他講 得最好的部分,這也是拉馬努金所鍾愛的部分。
這本書對拉馬努金的影響,說多大都不為過 不過該書一點沒講函數論和橢圓函數,所以哈代懷疑拉馬努金可能至死也不曾解析函數的概念,而又對他 從哪裡獲得的與橢圓函數有關的知識表達了疑惑。 拉馬努金的筆記本,實際上可以看做他學習這本書所做的讀書筆記,他沿襲了這本書展示定理的方式。他證明了這書里的一些內容,因為沒有其他書的幫助,對他而言,每個解法都是一項研究。他除了做一些證 明,另外做出的推廣則顯得更為豐富、重要,不過幾乎完全沒有證明。
拉馬努金髮現的一些等式
另外關於拉馬努金曾說的「娜瑪卡女神在夢中用公式向他啟示」,我覺得更像是一種譬喻。畢竟,按哈代 的分析,拉馬努金是不「信」神的。
拉馬努金髮現的一些等式
還有一個最NB的式子:
默默的膜拜一下拉馬努金...
另外有網友提出了自己的看法:
小學低年級的時候就發現了x^2-y^2=(x+y)(x-y)這個公式。這個式子很簡單,用簡單的代數知識就可以證明,但是當時我並沒有學過任何的代數知識,我是如何得到的呢?以下是我的思維完整過程:
因為我算過4-1=3,而3=3*1,3和1恰好等於2+1和2-1;同樣我也算過9-1=8,而8=4*2,4和2恰好是3+1和3-1。9-4也是這個道理。
所以雖然小學時沒有接受過任何正規的代數知識,也無法給出證明,但是通過大量運算經驗我就可以猜出「兩個數的平方差等於兩個數之和乘以兩個數之差」這樣的公式。
另一個例子是,我在小學時也自己發現了等差數列求和的經驗公式,同樣完全沒有代數知識的情況下,大量運算經驗讓我知道用1+9,2+8,3+7...這樣的演算法會更簡便。
好,現在回到Ramanujan上來。顯然,Ramnujan的運算能力遠超常人,影片和各種資料也多次證實這一點。做一個類比,在他眼裡做乘方開方的運算就和我們做加減法的難度差不多。在他眼裡做積分和微分就和我們做乘除法差不多。而且他可以輕鬆把這些乘方開方積分微分的數字算到成百上千。
當你有了這等驚人的運算能力,你會覺得那些公式就變得瞬間親切了(你不妨把那些式子乘方開方全部替換成加減法來看)。因為他完全可以就像我小時候那樣,只需自己代數字進去算就可以了,完全不需要知道證明過程,但是卻可以猜出公式。這就是他為什麼能寫出公式,卻很多時候寫不出證明過程的尷尬。因為實際情況是,他腦子裡算了一大堆發現都是對的,但是哈代問他要嚴格證明的時候他卻給不出,最後只能說是直覺。這也是影片中他給人感覺一直不太自信的原因,原因很大可能就是他是用枚舉法算的,而不是嚴格證的,所以一直感覺他無法據理力爭。
我們常人看這些公式覺得簡直開掛,彷彿來自虛空,歸根結底還是我們的運算能力跟不上罷了
TAG:哲學園 |