當前位置:
首頁 > 知識 > 深度學習資源,包括一系列架構、模型與建議

深度學習資源,包括一系列架構、模型與建議

項目地址:https://github.com/rasbt/deeplearning-models

Jupyter筆記本中TensorFlow和PyTorch的各種深度學習架構,模型和技巧的集合。

傳統機器學習

感知機 Perceptron [TensorFlow 1] [PyTorch]

邏輯回歸 Logistic Regression [TensorFlow 1] [PyTorch]

Softmax回歸(多項邏輯回歸) Softmax Regression (Multinomial Logistic Regression) [TensorFlow 1] [PyTorch]

多層感知機

Multilayer Perceptron [TensorFlow 1] [PyTorch]

Multilayer Perceptron with Dropout [TensorFlow 1] [PyTorch]

Multilayer Perceptron with Batch Normalization [TensorFlow 1] [PyTorch]

Multilayer Perceptron with Backpropagation from Scratch [TensorFlow 1] [PyTorch]

卷積神經網路

基本

Convolutional Neural Network [TensorFlow 1] [PyTorch]

Convolutional Neural Network with He Initialization [PyTorch]

概念

Replacing Fully-Connnected by Equivalent Convolutional Layers [PyTorch]

完全卷積

Fully Convolutional Neural Network [PyTorch]

AlexNet

AlexNet on CIFAR-10 [PyTorch]

VGG

Convolutional Neural Network VGG-16 [TensorFlow 1] [PyTorch]

VGG-16 Gender Classifier Trained on CelebA [PyTorch]

Convolutional Neural Network VGG-19 [PyTorch]

ResNet

ResNet and Residual Blocks [PyTorch]

ResNet-18 Digit Classifier Trained on MNIST [PyTorch]

ResNet-18 Gender Classifier Trained on CelebA [PyTorch]

ResNet-34 Digit Classifier Trained on MNIST [PyTorch]

ResNet-34 Gender Classifier Trained on CelebA [PyTorch]

ResNet-50 Digit Classifier Trained on MNIST [PyTorch]

ResNet-50 Gender Classifier Trained on CelebA [PyTorch]

ResNet-101 Gender Classifier Trained on CelebA [PyTorch]

ResNet-152 Gender Classifier Trained on CelebA [PyTorch]

Network in Network

Network in Network CIFAR-10 Classifier [PyTorch]

度量學習

Siamese Network with Multilayer Perceptrons [TensorFlow 1]

自編碼器

完全連接的自編碼器

Autoencoder [TensorFlow 1] [PyTorch]

卷積自編碼器

Convolutional Autoencoder with Deconvolutions / Transposed Convolutions[TensorFlow 1] [PyTorch]

Convolutional Autoencoder with Deconvolutions (without pooling operations) [PyTorch]

Convolutional Autoencoder with Nearest-neighbor Interpolation [TensorFlow 1] [PyTorch]

Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA [PyTorch]

Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw [PyTorch]

變分自編碼器

Variational Autoencoder [PyTorch]

Convolutional Variational Autoencoder [PyTorch]

條件變分自編碼器

Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss) [PyTorch]

Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss) [PyTorch]

生成對抗網路(GAN)

Fully Connected GAN on MNIST [TensorFlow 1] [PyTorch]

Convolutional GAN on MNIST [TensorFlow 1] [PyTorch]

Convolutional GAN on MNIST with Label Smoothing [PyTorch]

遞歸神經網路(RNN)

多對一:情感分析/分類

A simple single-layer RNN (IMDB) [PyTorch]

A simple single-layer RNN with packed sequences to ignore padding characters (IMDB) [PyTorch]

RNN with LSTM cells (IMDB) [PyTorch]

RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors [PyTorch]

RNN with LSTM cells and Own Dataset in CSV Format (IMDB) [PyTorch]

RNN with GRU cells (IMDB) [PyTorch]

Multilayer bi-directional RNN (IMDB) [PyTorch]

多對多/序列到序列

A simple character RNN to generate new text (Charles Dickens) [PyTorch]

順序回歸

Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite [PyTorch]

Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite [PyTorch]

Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite [PyTorch]

技巧和竅門

Cyclical Learning Rate [PyTorch]

PyTorch工作流程和機制

自定義數據集

Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5 [PyTorch]

Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA [PyTorch]

Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw [PyTorch]

Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset [PyTorch]

訓練和預處理

Dataloading with Pinned Memory [PyTorch]

Standardizing Images [PyTorch]

Image Transformation Examples [PyTorch]

Char-RNN with Own Text File [PyTorch]

Sentiment Classification RNN with Own CSV File [PyTorch]

並行計算

Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA [PyTorch]

其他

Sequential API and hooks [PyTorch]

Weight Sharing Within a Layer [PyTorch]

Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib [PyTorch]

Autograd

Getting Gradients of an Intermediate Variable in PyTorch [PyTorch]

TensorFlow工作流程和機制

自定義數據集

Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives [TensorFlow 1]

Storing an Image Dataset for Minibatch Training using HDF5 [TensorFlow 1]

Using Input Pipelines to Read Data from TFRecords Files [TensorFlow 1]

Using Queue Runners to Feed Images Directly from Disk [TensorFlow 1]

Using TensorFlow"s Dataset API [TensorFlow 1]

訓練和預處理

Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives [TensorFlow 1]

喜歡這篇文章嗎?立刻分享出去讓更多人知道吧!

本站內容充實豐富,博大精深,小編精選每日熱門資訊,隨時更新,點擊「搶先收到最新資訊」瀏覽吧!


請您繼續閱讀更多來自 AI研習社 的精彩文章:

如何用 seq2seq 模型來應對 NLP 任務

TAG:AI研習社 |