一道求線段長度的題目讓人想破腦袋,對於給出的條件不知道咋用
各位朋友,你們好!這裡是專註小學和初中數學知識的數學世界,全部文章均由貓哥原創,很樂意與大家一起分享和交流數學問題。另外說明一點,「數學世界」並非為了講解難題而存在,學習數學的關鍵是掌握分析問題的方法,並不是要做太多難題。
今天,我給大家講解一道小學數學中通過面積求線段長度的題目,這道題給出的條件與一般的題目不一樣,沒有辦法直接使用,必須認真觀察圖形,通過圖形的拼合才能解決問題。下面,我們就一起來看這道例題吧!
例題:如圖,已知正方形ABCD的邊長為10厘米,AE的長是3厘米,並且DGH的面積等於兩個陰影三角形的面積之和,求FC的長是多少厘米?
分析:此題是求線段長度的題目,一般來說,線段長度可通過面積公式變形來求。但是此題要想通過面積來求FC的長,必須知道三角形的面積與對應的高,由圖可知,FCD是直角三角形,DC可以作為FC的高,如果能夠求出FCD的面積,即可得到結果。
下面思考如何求FCD的面積,觀察圖形可以發現,AGD面積 DGH面積 DHC面積=正方形ABCD面積的一半,由於「DGH的面積等於兩個陰影三角形的面積之和」,可以得出:DAE面積 DFC面積=正方形ABCD面積的一半,所以FCD的面積可求出來。如此一來,我們就可以用面積公式的變形求出FC的長。
解:正方形ABCD面積10×10=100平方厘米
AGD面積 DGH面積 DHC面積=100÷2=50平方厘米
所以DAE面積 DFC面積=50平方厘米
DAE面積是 3×10÷2=15平方厘米
DFC面積是 50-15=35平方厘米
FC的長是 35×2÷10=7厘米
答:FC的長是7厘米。
點評:解決此題的關鍵掌握組合圖形的面積組成,能夠運用面積的等量代換,以及三角形面積公式的靈活運用。到此為止,這道數學題就完整的解答出來啦!
對於以上的解答過程,大家應該都可以看明白吧。若朋友們還有不清楚的地方或者有更好的解題方法,歡迎在此留言並參與討論。由於時間倉促,如果文章中出現錯別字或小錯誤,請大家諒解!
※這道求線段長度的數學題似乎無從下手,若學會該方法則毫無難度
TAG:數學視界 |