植物單細胞Hi-C技術助力解析水稻配子、合子單細胞3D基因組結構
2019年7月22日,國家作物遺傳改良重點實驗室周道綉教授等人在Nature Plants發表了「Single-cell three dimensional genome structures of rice gametes and unicellular zygote」的研究論文。作者對開花植物水稻受精前後的配子、合子和葉肉細胞的染色質空間結構進行了分析研究,開發了一種高解析度的單細胞原位Hi-C技術,首次從單細胞的水平揭示了植物染色質空間結構在受精前後的構型動態變化特徵及其與基因表達調控之間的關係,為研究植物的ZGA(zygotic genome activation)、胚胎髮育和表觀遺傳調控,解析親本基因組之間的互作及其在雜種優勢形成機制中的作用提供了染色質空間結構基礎。
方 法
1、植物材料和生長條件
作者選用水稻品種(Oryza sativa spp. japonica cv. Dongjin),在溫室或稻田中發芽和生長。授粉前後採集圓錐花序樣本,進行配子和合子細胞的分離。
2、精子、卵子、合子和葉肉細胞的分離、固定和單細胞Hi-C文庫的構建
3、單細胞Hi-C數據處理和基因組三維結構構建
4、組織Hi-C數據下載
5、數據分析
a, Schema of the experimental procedure for single-cell Hi-C of rice eggs (E), sperm cells (S), unicellular zygotes (Z) and mesophyll (M) cells.
結 果
染色質空間結構是表觀遺傳研究的重要組成部分,研究染色質基因組的空間結構對理解染色質生物學特徵和基因功能結構、染色質修飾和基因表達調控之間的關係具有十分重要的意義。近年來,基於混合的植物組織或器官的多細胞水平,已經運用原位Hi-C技術解析了部分植物物種的染色質三維空間結構,但是都只是成千上萬個不同細胞的平均值結構,細胞間的染色質3D構型的差異只能通過單細胞水平進行觀察和研究。
為了研究單個植物細胞的染色質空間結構,作者開發了一種高解析度的植物單細胞原位Hi-C技術,對從水稻組織中分離出的卵子、精子、合子(授粉後6-8小時)和葉肉單細胞進行分析(Fig. 1a),最終獲得四個卵子、四個精子、三個合子和四個葉肉細胞的Hi-C數據,處理分析後發現每個細胞中染色質的空間結構不同,說明染色質的空間結構實際上是一個動態的結構。卵細胞和精細胞的染色質結構與葉肉細胞相似,並且在受精後發生重組。與哺乳動物細胞中端粒和著絲粒分別聚集在細胞核兩極的結構不同(Rabl構型),水稻細胞中染色體的端粒和著絲粒是分散地分布在細胞核中(Fig. 2a,b)。染色質三維結構的另外一個特徵是會劃分形成基因活性區域(A結構域)和非活性區域(B結構域),水稻染色體只具有相對數量較少的A、B結構域,並且一般在空間上簡單地摺疊成兩個(A/B式)或三個(A/B/A式)相對獨立的區域(Fig. 2c),功能不同的區域在細胞核內以相互嵌合的形式分布,而哺乳動物細胞中的染色體則呈現出更複雜的結構(反覆向內向外摺疊等),並且水稻的卵子和精子單細胞中就已經有A/B結構域的劃分,說明其不同結構域的劃分在受精前就已經完成。這種A/B結構的提前形成及簡單離散的分布方式,提供了細胞在後來的發育階段其內的染色體可以形成更多種類和更大單元的功能結構提供了無限的可能性。這一系列的染色質空間結構的特徵可能是植物基因表達調控的靈活性和可塑性的基礎。
Fig. 1 rice single-cell Hi-C 3D genome structure
a, Schema of the experimental procedure for single-cell Hi-C of rice eggs (E), sperm cells (S), unicellular zygotes (Z) and mesophyll (M) cells.
b, Reconstructed particle-on-a-string 3D genomes of two cells for each type; each particle equals five kilobase pairs. The 12 chromosomes are denoted by different colours.
c, Box plot showing statistical analysis of interchromosome interaction ratio in different cells; n=4 (eggs), 4 (sperm), 3 (zygotes) or 4 (mesophyll cells) biological replicates. The 25th and 75th percentiles (box), median and highest and lowest values are shown. Significances of difference (Student』s t-test, two-sided) are indicated (**P=0.004; *P=0.011).
d, Interchromosome interaction between chromosomes (Chrs) 6 and 8, and their compactness in different cell types. The analysis was performed for all biological replicates (n=3–4) for each cell type.
Fig. 2 | Features of rice single-cell 3D genomes
a, Spatial distribution of telomeres (red) and centromeres (green) in the egg 3D genome.
b, Three orientations of the egg 3D genome with telomere to centromere of each chromosome coloured from blue to red along the colour spectrum.
c, Left, compartments A (red) and B (yellow) of chromosomes (Chrs) 3 and 10 are folded into separate spatial regions in egg cells. Middle, the chromosomes are coloured from start to end by blue to red along the colour spectrum to illustrate chromosome folding. Right, contact matrix heat map of Chrs 3 and 10 showing distribution pattern of A and B along the chromosomes; pixels, 0.5M. The arrows indicate assembly of the two A compartments of Chr 3 in the 3D structure.
d, Distribution pattern of A (red) and B (yellow) of all chromosomes in the egg 3D genome. Distributions in the 15sections of the simulated nuclear sphere are shown. The analysis was repeated for all biological replicates of egg (n=4), sperm (n=4), unicellular zygote (n=3) and mesophyll (n=4) cells. The data are shown in Supplementary Figs. 4–6.
同時,作者結合水稻染色質修飾和轉錄組數據,發現雖然不同修飾的組蛋白和不同表達水平的基因零散地分布在整個細胞核內,但是基因表達水平相似或具有類似組蛋白修飾的基因組區域在空間上更傾向局部富集,在核空間中形成具有基因表達和沉默不同功能的區域,且發現具有相似表達水平的基因比具有不同表達水平的基因在空間上相互結合的可能性更高,說明植物中很多基因的表達具有共調控機制(Fig. 3a,c)。
Fig. 3 Plaque distribution of active and silent chromatin domains in the rice 3D genome
a,Distribution of transcripts and histone modifications in a mesophyll nucleus (M1). Left, distribution of expressed and modified chromatin regions (red) in the 3D genome. Random distributions of the markers are illustrated as control. Right, statistics of aggregation value (see Supplementary Methods) of expressed and modified chromatin fragments in the 3D genomes of four mesophyll cells. Significance of differences (Student』s t-test, one-sided) of aggregation values calculated from the four cells (replicates) relative to random distribution were tested (expression, P=0.0001; H2A.Z, P=0.006; H3K27me3, P=0.043; H3K36me3, P=0.002; H3K4me3, P=0.041; H3K27me2, P=0.002). Error bars denote mean values±s.d. of biological replicates (n=4).
b, Left, active and silent chromatin regions form distinct foci in the mesophyll 3D genome. Middle, probabilities of assembly of chromatin domains with same modifications and of association of compartments A/B with different chromatin modifications. Error bars denote means±s.d. of biological replicates (n=4). Right, heat map of spatial correlation (Pearson, n=4 biological replicates) among four different chromatin states.
c, Heat map of spatial correlation (see Supplementary Methods) of chromatin fragments with different expression levels set from 0 to 5. Chromatin fragments with higher expression show higher correlations.
研究中發現基因活躍和沉默的染色質區域通常聚集在一起,在核空間內形成多個聚集區域。值得注意的是,卵子和合子的三維基因組中都包含一個緊密的空間基因沉默中心(compact silent centre,CSC),而精子細胞中是不存在的,說明CSC可能在受精後發生了重組。為了驗證CSC是否與ZGA有關,作者分析了相關差異表達基因,發現在雌配子中,CSC抑制部分基因的表達。受精後,CSC在合子中發生重組,原來在雌配子中受抑制的基因得到激活,而另一部分在雌配子和雄配子中原本表達的基因則被抑制。然而,不同合子或卵子的CSC不包含完全相同的一組基因或染色質片段,表明在水稻中CSC可能處於是一種時間動態狀態。這種動態的染色質CSC空間結構為卵子、合子細胞基因組激活的調節(zygotic genome activation,ZGA)和表觀遺傳調控提供了染色體空間結構基礎(Fig. 4)。
Fig. 4 Identification of a CSC in rice 3D genomes
a, Chromatin fragments belonging to both A and B compartments are densely folded in the centre of the 3D genome of egg, unicellular zygote and mesophyll cells.
b, Box plots of stick numbers forming the centres (see Supplementary Methods). Stick numbers of sperm central regions were counted as control. The 25th and 75th percentiles (box), median and highest and lowest values are shown. Pvalues of significance of difference (Student』s t-test, two-sided) between the comparisons are indicated; n=3–4 biological replicates for each cell type.
c, Visualization of chromosomes (Chrs) 1 and 4 in the egg 3D genome. Rainbow colours illustrate chromosome folding. Boxed areas are enlarged to show Chrs 1 and 4 folding in the CSC.
d, CSC is involved in zygote genome activation. Upper, 59egg-expressed and 173sperm-expressed genes are repressed in unicellular zygotes and are found in zygotic CSC, and 46upregulated genes in the zygote are released from the egg CSC. Lower, CSC-related genes have greater probability of being differentially expressed in the zygote relative to egg or sperm cells. Significance of differences (Fisher』s exact test, one-sided, Pvalues indicated). DEG, differentially expressed genes.
e, Spatial localization of six ZGA-related genes in unicellular zygote, egg or sperm cells relative to the CSC. The transcript levels (reads per kilobase million; Supplementary Table 2) of each gene in eggs or sperm and unicellular zygotes are shown. Error bars denote means±s.d., n=3 biological replicates. Z, zygote; E, egg; S, sperm.
綜上所述,作者開發的高解析度的植物單細胞Hi-C技術解析了水稻卵子、精子、合子和葉肉細胞染色體空間結構特徵及其分布特點,發現水稻3D基因組呈現更多的較短距離的互作方式,同時在細胞核中,組蛋白修飾或基因活性相關的部分形成獨立的分布區域,為水稻基因表達的共調控機制提供了支持。此外,在水稻卵細胞和精細胞3D基因組中檢測到染色體A/B分區,但在小鼠卵細胞中卻沒有,這表明水稻染色體的A/B分區可能是從配子遺傳到合子的,這可能有助於植物在受精後進行快速的ZGA。此外,研究還表明水稻精子和卵子的三維基因組結構在受精後不久發生動態重組,這可能有助於ZGA時期的基因調控。總的來說,作者的研究結果為理解植物三維基因組結構和受精前後染色質三維空間變化過程及其與植物中ZGA和表觀遺傳調控基因表達的關係奠定了染色質空間結構基礎。
微分基因是一家藉助於國際領先的高通量測序平台,為生命科學研究和基因檢測提供整體解決方案的高新科技企業。致力於將生命科學研究和健康管理與疾病診療領域的測序數據進行產業化應用,推動基因科技成果轉化。
2017年3月,微分基因入駐國家大基因中心,成為國家大基因中心「基因檢測平台」運營企業,並成立安徽微分基因科技有限公司。8月,位於安徽巢湖的標準潔凈實驗室及醫學檢驗所啟動運營,佔地約2100平方米。10月,全貫穿的基因檢測平台、大數據處理平台、高通量自動化樣本處理平台、一流的生物樣本庫開始正式運作。
在生物醫藥晉陞為「國家戰略性新興產業」的行業背景下,微分基因依託獨具優勢的高通量基因測序和大數據挖掘技術,為各大高校、醫院、科研單位以及第三方健康管理服務平台,提供專業的基因檢測和數據分析解讀服務。
健康|醫療|基因|科普
微分基因科技服務
記得這是一個有溫度的公眾號
※Nanopore測序在基因組 de novo中的應用
※Environment International:養殖魚類的糞便會增加海底沉積物中抗生素抗性基因的富集
TAG:微分基因 |